Suppr超能文献

EBC-Net:基于双扰动空间边缘偏向一致性正则化的胰腺三维半监督分割。

EBC-Net: 3D semi-supervised segmentation of pancreas based on edge-biased consistency regularization in dual perturbation space.

机构信息

School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China.

出版信息

Med Phys. 2024 Nov;51(11):8260-8271. doi: 10.1002/mp.17323. Epub 2024 Jul 23.

Abstract

BACKGROUND

Deep learning technology has made remarkable progress in pancreatic image segmentation tasks. However, annotating 3D medical images is time-consuming and requires expertise, and existing semi-supervised segmentation methods perform poorly in the segmentation task of organs with blurred edges in enhanced CT such as the pancreas.

PURPOSE

To address the challenges of limited labeled data and indistinct boundaries of regions of interest (ROI).

METHODS

We propose Edge-Biased Consistency Regularization (EBC-Net). 3D edge detection is employed to construct edge perturbations and integrate edge prior information into limited data, aiding the network in learning from unlabeled data. Additionally, due to the one-sidedness of a single perturbation space, we expand the dual-level perturbation space of both images and features to more efficiently focus the model's attention on the edges of the ROI. Finally, inspired by the clinical habits of doctors, we propose a 3D Anatomical Invariance Extraction Module and Anatomical Attention to capture anatomy-invariant features.

RESULTS

Extensive experiments have demonstrated that our method outperforms state-of-the-art methods in semi-supervised pancreas image segmentation. Moreover, it can better preserve the morphology of pancreatic organs and excel at edges region accuracy.

CONCLUSIONS

Incorporated with edge prior knowledge, our method mixes disturbances in dual-perturbation space, which shifts the network's attention to the fuzzy edge region using a few labeled samples. These ideas have been verified on the pancreas segmentation dataset.

摘要

背景

深度学习技术在胰腺图像分割任务中取得了显著进展。然而,标注 3D 医学图像既耗时又需要专业知识,并且现有的半监督分割方法在胰腺等增强 CT 中边缘模糊的器官分割任务中的表现不佳。

目的

解决有限标记数据和感兴趣区域(ROI)边界不清晰的挑战。

方法

我们提出了基于边缘的一致性正则化(EBC-Net)。使用 3D 边缘检测来构建边缘扰动,并将边缘先验信息集成到有限的数据中,帮助网络从无标签数据中学习。此外,由于单个扰动空间的片面性,我们扩展了图像和特征的双级扰动空间,以更有效地将模型的注意力集中在 ROI 的边缘上。最后,受医生临床习惯的启发,我们提出了 3D 解剖不变性提取模块和解剖注意力,以捕获解剖不变特征。

结果

大量实验表明,我们的方法在半监督胰腺图像分割方面优于最先进的方法。此外,它可以更好地保留胰腺器官的形态,并且在边缘区域的准确性方面表现出色。

结论

我们的方法结合了边缘先验知识,在双扰动空间中混合了干扰,使用少量标记样本将网络的注意力转移到模糊的边缘区域。这些想法已在胰腺分割数据集上得到验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验