Suppr超能文献

利用 PANDA 对空间转录组学中的细胞类型和基因表达进行双重解码。

Dual decoding of cell types and gene expression in spatial transcriptomics with PANDA.

机构信息

School of Mathematics and Statistics, and Hubei Key Lab-Math. Sci., Central China Normal University, Wuhan 430079, Hubei, China.

State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.

出版信息

Nucleic Acids Res. 2024 Nov 11;52(20):12173-12190. doi: 10.1093/nar/gkae876.

Abstract

Sequencing-based spatial transcriptomics technologies have revolutionized our understanding of complex biological systems by enabling transcriptome profiling while preserving spatial context. However, spot-level expression measurements often amalgamate signals from diverse cells, obscuring potential heterogeneity. Existing methods aim to deconvolute spatial transcriptomics data into cell type proportions for each spot using single-cell RNA sequencing references but overlook cell-type-specific gene expression, essential for uncovering intra-type heterogeneity. We present PANDA (ProbAbilistic-based decoNvolution with spot-aDaptive cell type signAtures), a novel method that concurrently deciphers spot-level gene expression into both cell type proportions and cell-type-specific gene expression. PANDA integrates archetypal analysis to capture within-cell-type heterogeneity and dynamically learns cell type signatures for each spot during deconvolution. Simulations demonstrate PANDA's superior performance. Applied to real spatial transcriptomics data from diverse tissues, including tumor, brain, and developing heart, PANDA reconstructs spatial structures and reveals subtle transcriptional variations within specific cell types, offering a comprehensive understanding of tissue dynamics.

摘要

基于测序的空间转录组学技术通过在保留空间背景的同时进行转录组谱分析,彻底改变了我们对复杂生物系统的理解。然而,斑点水平的表达测量通常会合并来自不同细胞的信号,从而掩盖潜在的异质性。现有的方法旨在使用单细胞 RNA 测序参考将空间转录组学数据解卷积为每个斑点的细胞类型比例,但忽略了细胞类型特异性基因表达,这对于揭示同类型内的异质性至关重要。我们提出了 PANDA(基于概率的斑点自适应细胞类型特征的解卷积),这是一种新颖的方法,可以同时将斑点水平的基因表达解析为细胞类型比例和细胞类型特异性基因表达。PANDA 集成了原型分析来捕获细胞内的异质性,并在解卷积过程中为每个斑点动态学习细胞类型特征。模拟表明 PANDA 的性能优越。应用于来自不同组织(包括肿瘤、大脑和发育中的心脏)的真实空间转录组学数据,PANDA 重建了空间结构并揭示了特定细胞类型内的细微转录变化,从而全面了解组织动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0982/11551751/eb907923fbd0/gkae876figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验