Adetuyi Oluwatosin Adefunke, Wimalasena Kandatege
Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS 67260, USA.
Toxics. 2025 Jul 29;13(8):637. doi: 10.3390/toxics13080637.
Mitochondrial dysfunction is a key contributor to neurodegeneration, particularly in Parkinson's disease (PD), where dopaminergic neurons being highly metabolically active are vulnerable to oxidative stress and bioenergetic failure. In this study, we investigate the effects of rotenone, a Complex I inhibitor, and antimycin A, a Complex III inhibitor, on mitochondrial function in MN9D dopaminergic neuronal cells. Cells were treated with rotenone (1.5 µM) or antimycin A (10 µM) for one hour, and key biochemical parameters were assessed, including ATP levels, reactive oxygen species (ROS) production, dopamine metabolism, and neuromelanin formation. Our results indicate significant ATP depletion and ROS accumulation following treatment with both inhibitors, with antimycin A inducing a more pronounced oxidative stress response. Dysregulation of dopamine biosynthesis differed mechanistically from vesicular monoamine transporter (VMAT2) inhibition by tetrabenazine, suggesting alternative pathways of catecholamine disruption. Additionally, oxidative stress led to increased neuromelanin accumulation, indicating a possible adaptive response to mitochondrial dysfunction. These findings provide insights into the cellular mechanisms underlying dopaminergic neurotoxicity and highlight mitochondrial electron transport chain inhibition as a key driver of PD pathogenesis. Future research should explore therapeutic strategies aimed at enhancing mitochondrial function to mitigate neurodegenerative progression.
线粒体功能障碍是神经退行性变的关键因素,尤其是在帕金森病(PD)中,高代谢活性的多巴胺能神经元易受氧化应激和生物能量衰竭的影响。在本研究中,我们研究了复合物I抑制剂鱼藤酮和复合物III抑制剂抗霉素A对MN9D多巴胺能神经元细胞线粒体功能的影响。细胞用鱼藤酮(1.5µM)或抗霉素A(10µM)处理1小时,并评估关键生化参数,包括ATP水平、活性氧(ROS)产生、多巴胺代谢和神经黑色素形成。我们的结果表明,两种抑制剂处理后均出现显著的ATP消耗和ROS积累,抗霉素A诱导更明显的氧化应激反应。多巴胺生物合成的失调在机制上不同于丁苯那嗪对囊泡单胺转运体(VMAT2)的抑制,提示儿茶酚胺破坏的替代途径。此外,氧化应激导致神经黑色素积累增加,表明对线粒体功能障碍可能存在适应性反应。这些发现为多巴胺能神经毒性的细胞机制提供了见解,并强调线粒体电子传递链抑制是PD发病机制的关键驱动因素。未来的研究应探索旨在增强线粒体功能以减轻神经退行性变进展的治疗策略。