Kalpakoglou Kyriakos, Calderón-Pérez Lorena, Boqué Noemi, Guldas Metin, Erdoğan Demir Çağla, Gymnopoulos Lazaros P, Dimitropoulos Kosmas
Visual Computing Lab (VCL), Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece.
Technological Unit of Nutrition and Health, Eurecat, Technology Centre of Catalonia, Reus, Spain.
Front Nutr. 2025 Aug 14;12:1546107. doi: 10.3389/fnut.2025.1546107. eCollection 2025.
Modern lifestyle trends such as sedentary behaviors and unhealthy diets pose a major health challenge, as they have been related to multiple pathologies. Following a healthy diet has become increasingly difficult in today's fast-paced world. Given this context, artificial intelligence can play a pivotal role in addressing the challenge.
We present an AI-based nutrition recommendation system that generates balanced, personalized weekly meal plans tailored to the nutritional needs and preferences of healthy adults. The proposed method retrieves dishes and meals from an expert-validated database featuring Mediterranean foods, following a structured four-step process to recommend a weekly Nutrition Plan (NP).
The system's performance is evaluated across 4,000 generated user profiles in three key areas: (a) dish/meal filtering accuracy based on user-specific parameters (e.g., allergies), (b) diversity of meals and food group balance, and (c) accuracy in caloric and macronutrient recommendations. The system achieves high accuracy in terms of suggested caloric and nutrient content while ensuring seasonality, diversity, and food group variety.
With solid accuracy in filtering, diversity, and caloric/macronutrient suggestions, the proposed system offers a promising solution to modern dietary challenges.
久坐不动的行为和不健康的饮食等现代生活方式趋势构成了重大的健康挑战,因为它们与多种疾病相关。在当今快节奏的世界中,遵循健康饮食变得越来越困难。在此背景下,人工智能可以在应对这一挑战中发挥关键作用。
我们提出了一种基于人工智能的营养推荐系统,该系统能根据健康成年人的营养需求和偏好生成平衡、个性化的每周饮食计划。所提出的方法从一个经过专家验证的以地中海食物为特色的数据库中检索菜肴和膳食,遵循一个结构化的四步流程来推荐每周营养计划(NP)。
该系统的性能在4000个生成的用户档案的三个关键领域进行评估:(a)基于用户特定参数(如过敏)的菜肴/膳食过滤准确性,(b)膳食多样性和食物组平衡,以及(c)热量和宏量营养素推荐的准确性。该系统在建议的热量和营养成分含量方面达到了高精度,同时确保了季节性、多样性和食物组种类。
所提出的系统在过滤、多样性以及热量/宏量营养素建议方面具有可靠的准确性,为现代饮食挑战提供了一个有前景的解决方案。