Parrilla Marc, Claes Nathalie, Toyos-Rodríguez Celia, Dricot Caroline E M K, Steijlen Annemarijn, Lebeer Sarah, Bals Sara, De Wael Karolien
Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlight Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium.
NANOlight Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
Biosens Bioelectron. 2025 Dec 1;289:117934. doi: 10.1016/j.bios.2025.117934. Epub 2025 Aug 29.
Microneedle-based electrochemical sensors (MES) are developed as interface systems between the sensor and interstitial fluid (ISF), allowing the transdermal monitoring of analytes with clinical value. However, the widespread adoption of MES platforms to enable advances in devices for health monitoring is still a challenge. Herein, we propose an affordable and versatile wearable patch based on 3D-printed microneedle arrays to facilitate the development of electrochemical sensors. A plug-in design with a three-electrode setup allows a rapid configuration as a voltammetric sensor. Sputtering is employed to fabricate microneedle array electrodes based on nanostructured gold. The material highlights the excellent electrochemical performance due to the nanostructured surface and provides antibiofouling capability against protein. The ability of the MES to penetrate porcine skin without damage is successfully demonstrated, showing a decrease in the signal of only 8.4 % after four insertions. Thereafter, the analytical characterization for uric acid (UA) is completed in buffer solution, protein-enriched solution, emulated ISF, and in an ex vivo setup (slope 9.2 nA μM), showing remarkable performance within the physiological range of UA (150-500 μM) and excellent reversibility while pierced in porcine skin (<3.3 % difference between upwards and downwards calibrations). Finally, a preliminary on-body test shows the capability of the MES to pierce the skin, proving the robustness of the wearable patch for on-body analysis and exhibiting a 5.8 % difference in the signal before and after the test. The results demonstrated a versatile microneedle-based electrochemical cell utilizing nanostructured gold, enabling the rapid development of innovative electrochemical sensors for ISF monitoring.
基于微针的电化学传感器(MES)被开发为传感器与组织间液(ISF)之间的接口系统,可实现具有临床价值的分析物的经皮监测。然而,广泛采用MES平台以推动健康监测设备的进步仍然是一项挑战。在此,我们提出一种基于3D打印微针阵列的经济实惠且通用的可穿戴贴片,以促进电化学传感器的开发。具有三电极设置的插件式设计允许快速配置为伏安传感器。采用溅射法制备基于纳米结构金的微针阵列电极。该材料由于其纳米结构表面而具有出色的电化学性能,并具有抗蛋白质生物污染能力。成功证明了MES能够无损穿透猪皮,四次插入后信号仅下降8.4%。此后,在缓冲溶液、富含蛋白质的溶液、模拟ISF以及离体设置中完成了对尿酸(UA)的分析表征(斜率为9.2 nA μM),在UA的生理范围内(150 - 500 μM)表现出卓越性能,并且在刺入猪皮时具有出色的可逆性(向上和向下校准之间的差异<3.3%)。最后,初步的人体测试显示了MES穿透皮肤的能力,证明了可穿戴贴片用于人体分析的稳健性,并且测试前后信号差异为5.8%。结果展示了一种利用纳米结构金的通用型基于微针的电化学电池,能够快速开发用于ISF监测的创新型电化学传感器。