Karlsen Anders Peder Højer, Møller Marcus Ølgaard, Pedersen Nikolaj Krebs, Veje Mathilde, Andersen Jonas Valbjørn, Meyhoff Christian Sylvest, Mathiesen Ole, Nørskov Anders Kehlet, Olsen Markus Harboe
Department of Anaesthesia and Intensive Care, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
Acta Anaesthesiol Scand. 2025 Oct;69(9):e70116. doi: 10.1111/aas.70116.
Electronic health records can be used to create high-quality databases if data are structured and well-registered, which is the case for most perioperative data in the Capital and Zealand Regions of Denmark. We present the purpose and development of the AI and Automation in Anaesthesia (TRIPLE-A) database-a platform designed for epidemiology, prediction, quality control, and automated research data collection.
Data collection from the electronic medical record (EPIC Systems Corporation, WI, USA) was approved by the Capital Region, Denmark, and ethical approval was waived. The first TRIPLE-A database version included surgical procedures performed in a public hospital in the Capital and Zealand Regions of Denmark from 2017 to 2024 without age restrictions. We received structured, timestamped raw data including event log, medicine administrations, blood samples, vital parameters, etc. In collaboration with surgical specialists, we classified surgical procedures based on procedure codes and names. Variables were coded and enriched using multiple data sources (e.g., acute kidney injury: increase in creatinine OR new dialysis or ICD-10 codes) to improve quality and mirror the clinical reasoning of physicians. Variable coding, validation and improvement continuous in iterative processes with each project in the database. The database is scheduled for updates every 6 months and as needed, currently approved to December 2030 with plans for future extension. The database is used for multiple purposes in research with broad collaboration.
The first version of the TRIPLE-A database consists of 1,142,108 surgeries in 675,790 patients. Data were processed into 17 summary tables (anaesthesia, airway management, complications, etc.) including a total of 1617 variables. The database currently provides data for 34 research projects.
TRIPLE-A is a continuously updated, granular, high-quality perioperative database. It will be used for (1) high-quality epidemiological research, (2) automated data retrieval into case report forms in cohort studies and randomized trials, (3) monitoring and evaluation of clinical implementation of interventions, and (4) development of perioperative prediction models for risk stratification and individualized treatment.
如果数据结构合理且记录完善,电子健康记录可用于创建高质量数据库,丹麦首都地区和西兰地区的大多数围手术期数据便是如此。我们介绍了麻醉领域人工智能与自动化(TRIPLE - A)数据库的目的及发展情况,该数据库是一个为流行病学、预测、质量控制和自动化研究数据收集而设计的平台。
从电子病历(美国威斯康星州的EPIC Systems Corporation)收集数据获得了丹麦首都地区的批准,且无需伦理批准。首个TRIPLE - A数据库版本包含2017年至2024年在丹麦首都地区和西兰地区一家公立医院进行的手术程序,无年龄限制。我们接收了结构化的、带时间戳的原始数据,包括事件日志、药物管理、血液样本、生命体征参数等。与外科专家合作,我们根据手术代码和名称对手术程序进行分类。使用多个数据源(如急性肾损伤:肌酐升高或新的透析治疗或国际疾病分类第十版代码)对变量进行编码和充实,以提高质量并反映医生的临床推理。随着数据库中每个项目的推进,变量编码、验证和改进在迭代过程中持续进行。该数据库计划每6个月更新一次,并根据需要进行更新,目前批准使用至2030年12月,并计划在未来进行扩展。该数据库在广泛合作的研究中用于多种目的。
TRIPLE - A数据库的首个版本包含675,790名患者的1,142,108例手术。数据被处理成17个汇总表(麻醉、气道管理、并发症等),共包含1617个变量。该数据库目前为34个研究项目提供数据。
TRIPLE - A是一个持续更新的、粒度精细的、高质量的围手术期数据库。它将用于(1)高质量的流行病学研究,(2)在队列研究和随机试验中自动将数据检索到病例报告表中,(3)监测和评估干预措施的临床实施情况,以及(4)开发用于风险分层和个体化治疗方案的围手术期预测模型。