Suppr超能文献

用于次黄嘌呤检测的碳纳米纤维增强分子印迹电化学传感器。

Carbon nanofiber-enhanced molecular imprinted electrochemical sensor for hypoxanthine detection.

作者信息

Armutcu Canan, Pişkin Sena, Özgür Erdoğan, Karakaya Mustafa, Çorman M Emin, Uzun Lokman

机构信息

Faculty of Science, Department of Chemistry, Hacettepe University, Ankara, Turkey.

Faculty of Engineering & Architecture, Department of Energy Systems, Sinop University, Sinop, Turkey.

出版信息

Mikrochim Acta. 2025 Sep 12;192(10):662. doi: 10.1007/s00604-025-07502-5.

Abstract

A molecularly imprinted electrochemical sensor (MIP) was developed using thymine-functionalized carbon nanofibers (Thy@CNFs) to enable selective detection of hypoxanthine (HYP). The sensor was fabricated by first depositing Thy@CNFs onto a glassy carbon electrode (GCE), followed by electropolymerization of a pyrrole-co-pyrrole-3-carboxylic acid (Py-co-PyCOOH) copolymer in the presence of HYP. Each modification step was characterized using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and contact angle measurements. Under optimized conditions, the Thy@CNFs-modified MIP sensor (Thy@CNFs/MIP/GCE) exhibited a linear response to HYP concentrations ranging from 1 × 10 to 1 × 10 M, with a detection limit of 1.71 × 10 M. Finally, the sensor was successfully applied to commercial serum and artificial urine sample, achieving recoveries of 99.55% and 100.17%, respectively, demonstrating its accuracy, precision, and practical applicability in real sample analysis.

摘要

利用胸腺嘧啶功能化的碳纳米纤维(Thy@CNFs)开发了一种分子印迹电化学传感器(MIP),用于选择性检测次黄嘌呤(HYP)。该传感器的制备方法是先将Thy@CNFs沉积在玻碳电极(GCE)上,然后在HYP存在的情况下对吡咯 - 共 - 吡咯 - 3 - 羧酸(Py - co - PyCOOH)共聚物进行电聚合。每个修饰步骤都使用电化学阻抗谱(EIS)、循环伏安法(CV)、衰减全反射 - 傅里叶变换红外光谱(ATR - FTIR)、扫描电子显微镜(SEM)和接触角测量进行表征。在优化条件下,Thy@CNFs修饰的MIP传感器(Thy@CNFs/MIP/GCE)对浓度范围为1×10至1×10 M的HYP表现出线性响应,检测限为1.71×10 M。最后,该传感器成功应用于商业血清和人工尿液样本,回收率分别为99.55%和100.17%,证明了其在实际样品分析中的准确性、精密度和实际适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验