Suppr超能文献

基于脑电图的机器学习增强阿尔茨海默病诊断:基于频谱特征的比较分析

Enhancing Alzheimer's Diagnosis with Machine Learning on EEG: A Spectral Feature-Based Comparative Analysis.

作者信息

Senkaya Yeliz, Kurnaz Cetin, Ozbilgin Ferdi

机构信息

Department of Computer Applications, Akkus Vocational School, Ordu University, 52950 Ordu, Türkiye.

Department of Electrical and Electronics Engineering, Faculty of Engineering, Ondokuz Mayıs University, 55139 Samsun, Türkiye.

出版信息

Diagnostics (Basel). 2025 Aug 29;15(17):2190. doi: 10.3390/diagnostics15172190.

Abstract

Alzheimer's disease (AD) is a devastating neurodegenerative disorder that progressively impairs cognitive, neurological, and behavioral functions, severely affecting quality of life. The current diagnostic process relies on expert interpretation of extensive clinical assessments, often leading to delays that reduce the effectiveness of early interventions. Given the lack of a definitive cure, accelerating and improving diagnosis is critical to slowing disease progression. Electroencephalography (EEG), a widely used non-invasive technique, captures AD-related brain activity alterations, yet extracting meaningful features from EEG signals remains a significant challenge. This study introduces a machine learning (ML)-driven approach to enhance AD diagnosis using EEG data. EEG recordings from 36 AD patients, 23 Frontotemporal Dementia (FTD) patients, and 29 healthy individuals (HC) were analyzed. EEG signals were processed within the 0.5-45 Hz frequency range using the Welch method to compute the Power Spectral Density (PSD). From both the time-domain signals and the corresponding PSD, a total of 342 statistical and spectral features were extracted. The resulting feature set was then partitioned into training and test datasets while preserving the distribution of class labels. Feature selection was performed on the training set using Spearman and Pearson correlation analyses to identify the most informative features. To enhance classification performance, hyperparameter tuning was conducted using Bayesian optimization. Subsequently, classification was carried out using Support Vector Machines (SVMs) and k-Nearest Neighbors (k-NN) the optimized hyperparameters. The SVM classifier achieved a notable accuracy of 96.01%, outperforming previously reported methods. These results demonstrate the potential of machine learning-based EEG analysis as an effective approach for the early diagnosis of Alzheimer's Disease, enabling timely clinical intervention and ultimately contributing to improved patient outcomes.

摘要

阿尔茨海默病(AD)是一种具有毁灭性的神经退行性疾病,会逐渐损害认知、神经和行为功能,严重影响生活质量。当前的诊断过程依赖于专家对广泛临床评估的解读,这常常导致诊断延迟,降低了早期干预的效果。鉴于缺乏确切的治愈方法,加快并改善诊断对于减缓疾病进展至关重要。脑电图(EEG)是一种广泛使用的非侵入性技术,可捕捉与AD相关的大脑活动变化,但从EEG信号中提取有意义的特征仍然是一项重大挑战。本研究引入了一种基于机器学习(ML)的方法,以利用EEG数据增强AD诊断。对36名AD患者、23名额颞叶痴呆(FTD)患者和29名健康个体(HC)的EEG记录进行了分析。使用韦尔奇方法在0.5 - 45 Hz频率范围内处理EEG信号,以计算功率谱密度(PSD)。从时域信号和相应的PSD中总共提取了342个统计和频谱特征。然后将所得特征集划分为训练和测试数据集,同时保留类别标签的分布。在训练集上使用斯皮尔曼和皮尔逊相关分析进行特征选择,以识别最具信息性的特征。为了提高分类性能,使用贝叶斯优化进行超参数调整。随后,使用支持向量机(SVM)和k近邻(k-NN)对优化后的超参数进行分类。SVM分类器实现了96.01%的显著准确率,优于先前报道的方法。这些结果表明,基于机器学习的EEG分析作为阿尔茨海默病早期诊断的有效方法具有潜力,能够实现及时的临床干预,并最终改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8a7/12428020/9f0fab699690/diagnostics-15-02190-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验