Cheng Tsai-Mu, Wang Yi-Ru, Chiu Yu-Hsuan, Kongvarhodom Chutima, Saukani Muhammad, Yougbaré Sibidou, Chen Hung-Ming, Lin Lu-Yin
Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan.
ACS Omega. 2025 Aug 27;10(35):40557-40566. doi: 10.1021/acsomega.5c06250. eCollection 2025 Sep 9.
Bismuth vanadate (BiVO) is regarded as a promising photoanode material for solar-driven photoelectrochemical (PEC) water oxidation, due to its visible-light absorption and favorable band edge positions. However, the practical application is hindered by limited charge carrier mobility and significant surface recombination. In this study, a dual-modification strategy is applied by combining alkaline etching and MXene integration to enhance surface reactivity and charge transport properties of BiVO. Alkaline etching introduces structural defects and active sites on BiVO surface, which promote hole accumulation and facilitate interfacial redox reactions. Meanwhile, incorporating MXene forms a conductive interface that accelerates hole extraction and suppresses recombination. Although alkaline etching slightly reduces light absorption due to morphological restructuring, the subsequent MXene addition recovers and enhances photon harvesting. In the absence of hole scavengers, the pristine BiVO electrode achieves a photocurrent density of 4.65 mA/cm at 1.23 V vs RHE at AM 1.5G, which increases to 5.13 mA/cm for alkaline-etched BiVO and further to 6.15 mA/cm for alkaline-etched BiVO coupled with MXene (MXene/E-BVO). Moreover, the MXene/E-BVO electrode retains 93.4% of its initial photocurrent after continuous illumination for 10,000 s. These results confirm the effectiveness of combining surface and interfacial engineering to improve PEC water splitting performance of BiVO.
钒酸铋(BiVO)因其可见光吸收能力和良好的能带边缘位置,被视为一种有前景的用于太阳能驱动光电化学(PEC)水氧化的光阳极材料。然而,其实际应用受到电荷载流子迁移率有限和显著的表面复合的阻碍。在本研究中,通过结合碱性蚀刻和MXene集成应用了一种双改性策略,以增强BiVO的表面反应性和电荷传输性能。碱性蚀刻在BiVO表面引入结构缺陷和活性位点,促进空穴积累并促进界面氧化还原反应。同时,引入MXene形成导电界面,加速空穴提取并抑制复合。尽管碱性蚀刻由于形态重构会略微降低光吸收,但随后添加MXene可恢复并增强光子捕获。在没有空穴清除剂的情况下,原始BiVO电极在AM 1.5G光照下,相对于可逆氢电极(RHE)在1.23 V时的光电流密度为4.65 mA/cm²,碱性蚀刻后的BiVO光电流密度增加到5.13 mA/cm²,而碱性蚀刻的BiVO与MXene耦合(MXene/E-BVO)后的光电流密度进一步增加到6.15 mA/cm²。此外,MXene/E-BVO电极在连续光照10000 s后仍保留其初始光电流的93.4%。这些结果证实了结合表面和界面工程来改善BiVO的PEC水分解性能的有效性。