Suppr超能文献

纳米孔内单个酶的动力学

Dynamics of single enzymes confined inside a nanopore.

作者信息

Galenkamp Nicole Stéphanie, van den Noort Marco, Maglia Giovanni

机构信息

Chemical Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen 9747 AG Groningen The Netherlands

Division of Physical Chemistry, Department of Chemistry, Lund University P.O. Box 124 22100 Lund Sweden.

出版信息

RSC Chem Biol. 2025 Sep 18. doi: 10.1039/d5cb00149h.

Abstract

Enzymes are powerful catalysts that perform chemical reactions with remarkable speed and specificity. Their intrinsic dynamics often play a crucial role in determining their catalytic properties. To achieve a comprehensive understanding of enzymes, a diverse and sophisticated experimental toolbox capable of studying enzyme dynamics at the single-molecule level is necessary. In this review, we discuss nanopore technology as an emerging and powerful platform in single-molecule enzymology. We demonstrate how nanopores can be employed to probe enzyme dynamics in real-time, and we highlight how these studies have contributed to fundamentally and quantitatively elucidating enzymological concepts, such as allostery and hysteresis. Finally, we explore the potentials and limitations of nanopores in advancing single-molecule enzymology. By presenting the unique possibilities offered by nanopores, we aim to inspire the integration of this technology into future enzymology research.

摘要

酶是强大的催化剂,能以惊人的速度和特异性进行化学反应。它们的内在动力学在决定其催化特性方面往往起着关键作用。为了全面了解酶,需要一个多样化且复杂的实验工具箱,能够在单分子水平上研究酶的动力学。在这篇综述中,我们讨论了纳米孔技术作为单分子酶学中一个新兴且强大的平台。我们展示了纳米孔如何用于实时探测酶的动力学,并强调了这些研究如何在从根本上和定量地阐明诸如变构和滞后等酶学概念方面做出了贡献。最后,我们探讨了纳米孔在推进单分子酶学方面的潜力和局限性。通过展示纳米孔提供的独特可能性,我们旨在激发将这项技术整合到未来的酶学研究中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7d/12445297/a60ee4140146/d5cb00149h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验