Takayama Takuya, Uto Tsubasa, Tsuge Taiki, Kondo Yusuke, Tampo Hironobu, Chiba Mayumi, Kaburaki Toshikatsu, Yanagi Yasuo, Takahashi Hidenori
Department of Ophthalmology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan.
DeepEyeVision Inc., Shimotsuke, Tochigi 329-0498, Japan.
Sensors (Basel). 2025 Sep 19;25(18):5862. doi: 10.3390/s25185862.
Retinal breaks are critical lesions that can cause retinal detachment and vision loss if not detected and treated early. Automated, accurate delineation of retinal breaks in ultra-widefield fundus (UWF) images remains challenging. In this study, we developed and validated a deep learning segmentation model based on the PraNet architecture to localize retinal breaks in break-positive cases. We trained and evaluated the model using a dataset comprising 34,867 UWF images of 8083 cases. Performance was assessed using image-level segmentation metrics, including accuracy, precision, recall, Intersection over Union (IoU), dice score, and centroid distance score. The model achieved an accuracy of 0.996, precision of 0.635, recall of 0.756, IoU of 0.539, dice score of 0.652, and centroid distance score of 0.081. To our knowledge, this is the first study to present pixel-level segmentation of retinal breaks in UWF images using deep learning. The proposed PraNet-based model showed high accuracy and robust segmentation performance, highlighting its potential for clinical application.
视网膜裂孔是一种关键病变,如果不及早发现和治疗,可能会导致视网膜脱离和视力丧失。在超广角眼底(UWF)图像中自动、准确地描绘视网膜裂孔仍然具有挑战性。在本研究中,我们开发并验证了一种基于PraNet架构的深度学习分割模型,用于在存在裂孔的病例中定位视网膜裂孔。我们使用一个包含8083例患者的34867张UWF图像的数据集对该模型进行训练和评估。使用图像级分割指标评估性能,包括准确率、精确率、召回率、交并比(IoU)、骰子系数和质心距离分数。该模型的准确率为0.996,精确率为0.635,召回率为0.756,IoU为0.539,骰子系数为0.652,质心距离分数为0.081。据我们所知,这是第一项使用深度学习对UWF图像中的视网膜裂孔进行像素级分割的研究。所提出的基于PraNet的模型显示出高准确率和强大的分割性能,突出了其临床应用潜力。