Suppr超能文献

弗氏链霉菌合成磷霉素。

Biosynthesis of fosfomycin by Streptomyces fradiae.

作者信息

Rogers T O, Birnbaum J

出版信息

Antimicrob Agents Chemother. 1974 Feb;5(2):121-32. doi: 10.1128/AAC.5.2.121.

Abstract

The antibiotic fosfomycin was produced as a secondary metabolite in a glucose-asparagine medium containing citrate, l-methionine, and l-glutamate. The citrate requirement for antibiotic synthesis was related to its requirement for growth. In contrast, l-methionine and l-glutamate caused a marked stimulation of fosfomycin production and had no effect on growth. l-Methionine had to be added early to effect maximal antibiotic synthesis later in the fermentation. The l-glutamate requirement was not specific, since several tricarboxylic acid cycle intermediates could replace this amino acid. l-Asparagine was the most effective nitrogen source for growth and production of fosfomycin. Glycine, an alternate nitrogen source, supported fosfomycin synthesis only when added in excess of that needed for growth. Cobalt and inorganic phosphate were required also for antibiotic production at concentrations exceeding those supporting maximal growth. Radioactive incorporation studies showed that the methyl carbon of methionine was the precursor of the methyl of fosfomycin. Carbon 1 of fosfomycin was derived from glucose carbons 1 and 6, whereas glucose-2-(14)C labeled fosfomycin carbon 2. Radioactivity from acetate-2-(14)C was distributed equally between fosfomycin carbons 1 and 2. No incorporation of acetate-1-(14)C, asparagine-U-(14)C, citrate-1,5-(14)C, or glutamate-U-(14)C occurred. The labeling pattern of fosfomycin carbons 1 and 2 was similar to that found in 2-aminoethylphosphonate from Tetrahymena.

摘要

抗生素磷霉素是在含有柠檬酸盐、L-甲硫氨酸和L-谷氨酸的葡萄糖-天冬酰胺培养基中作为次级代谢产物产生的。抗生素合成所需的柠檬酸盐与其生长所需相关。相比之下,L-甲硫氨酸和L-谷氨酸显著刺激了磷霉素的产生,而对生长没有影响。L-甲硫氨酸必须早期添加才能在发酵后期实现最大抗生素合成。L-谷氨酸的需求不具有特异性,因为几种三羧酸循环中间产物可以替代这种氨基酸。L-天冬酰胺是磷霉素生长和生产最有效的氮源。甘氨酸作为替代氮源,只有在添加量超过生长所需时才支持磷霉素合成。抗生素生产还需要钴和无机磷酸盐,其浓度要超过支持最大生长的浓度。放射性掺入研究表明,甲硫氨酸的甲基碳是磷霉素甲基的前体。磷霉素的碳1来自葡萄糖的碳1和碳6,而葡萄糖-2-(14)C标记了磷霉素的碳2。乙酸盐-2-(14)C的放射性在磷霉素的碳1和碳2之间平均分布。未发生乙酸盐-1-(14)C、天冬酰胺-U-(14)C、柠檬酸盐-1,5-(14)C或谷氨酸-U-(14)C的掺入。磷霉素碳1和碳2的标记模式与在四膜虫的2-氨基乙基膦酸盐中发现的模式相似。

相似文献

1
Biosynthesis of fosfomycin by Streptomyces fradiae.弗氏链霉菌合成磷霉素。
Antimicrob Agents Chemother. 1974 Feb;5(2):121-32. doi: 10.1128/AAC.5.2.121.

引用本文的文献

7
Novel integron-mediated fosfomycin resistance gene fosK.新型整合子介导的磷霉素抗性基因fosK
Antimicrob Agents Chemother. 2014 Aug;58(8):4978-9. doi: 10.1128/AAC.03131-14. Epub 2014 May 19.
10
Bioactive compounds from marine actinomycetes.海洋放线菌中的生物活性化合物。
Indian J Microbiol. 2008 Dec;48(4):410-31. doi: 10.1007/s12088-008-0052-z. Epub 2009 Jan 8.

本文引用的文献

2
Degradation of labeled propionic and acetic acids.标记的丙酸和乙酸的降解
Arch Biochem Biophys. 1951 Sep;33(2):173-8. doi: 10.1016/0003-9861(51)90094-x.
3
THE DETERMINATION OF SPECIFIC ACTIVITY OF BAC14O3 BY LIQUID SCINTILLATION ASSAY.
Int J Appl Radiat Isot. 1964 Apr;15:191-4. doi: 10.1016/0020-708x(64)90065-1.
5
Influence of cobalt on fermentative methylation.钴对发酵性甲基化的影响。
Appl Microbiol. 1966 Mar;14(2):280-3. doi: 10.1128/am.14.2.280-283.1966.
6
Bacterial growth on aminoalkylphosphonic acids.氨基烷基膦酸上的细菌生长。
J Bacteriol. 1966 Sep;92(3):623-7. doi: 10.1128/jb.92.3.623-627.1966.
7
Phosphonomycin: structure and synthesis.磷霉素:结构与合成
Science. 1969 Oct 3;166(3901):123-5. doi: 10.1126/science.166.3901.123.
9
Studies on the biosynthesis of lincomycin. IV. The origin of methyl groups.
Biochemistry. 1969 Aug;8(8):3408-11. doi: 10.1021/bi00836a040.
10
Biosynthesis of 2-aminoethylphosphonic acid in Tetrahymena.
Biochim Biophys Acta. 1968 Aug 6;165(1):164-6. doi: 10.1016/0304-4165(68)90200-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验