Suppr超能文献

将精氨酸用作粪肠球菌生长的能量来源。

Utilization of arginine as an energy source for the growth of Streptococcus faecalis.

作者信息

Deibel R H

出版信息

J Bacteriol. 1964 May;87(5):988-92. doi: 10.1128/jb.87.5.988-992.1964.

Abstract

Deibel, R. H. (American Meat Institute Foundation, Chicago, Ill.). Utilization of arginine as an energy source for the growth of Streptococcus faecalis. J. Bacteriol. 87:988-992. 1964.-Although both Streptococcus faecalis and S. faecium (and its variety durans) hydrolyze arginine, the utilization of this amino acid as an energy source appears to have taxonomic utility, as only S. faecalis and its varieties can couple the resultant energy with growth processes. Utilization of arginine by S. faecalis in a semisynthetic, casein-hydrolysate medium requires small concentrations of a fermentable carbohydrate (0.05%), presumably for synthetic reactions. The arginine analogue, agmatine, is utilized as an energy source by S. faecalis but not by S. faecium, and only approxinately 50% of the latter strains hydrolyzed this compound. Other ureido- and guanido-containing compounds tested were neither utilized as an energy source nor deaminated.

摘要

戴贝尔,R. H.(美国肉类研究所基金会,伊利诺伊州芝加哥)。粪肠球菌生长过程中精氨酸作为能源的利用。《细菌学杂志》87:988 - 992。1964年。——尽管粪肠球菌和屎肠球菌(及其变种耐久肠球菌)都能水解精氨酸,但将这种氨基酸作为能源利用似乎具有分类学意义,因为只有粪肠球菌及其变种能将产生的能量与生长过程相耦合。在半合成酪蛋白水解物培养基中,粪肠球菌利用精氨酸需要低浓度的可发酵碳水化合物(0.05%),大概用于合成反应。精氨酸类似物胍丁胺可被粪肠球菌用作能源,但屎肠球菌不能利用,且只有约50%的后者菌株能水解这种化合物。所测试的其他含脲基和胍基的化合物既不能用作能源也不能脱氨。

相似文献

1
Utilization of arginine as an energy source for the growth of Streptococcus faecalis.
J Bacteriol. 1964 May;87(5):988-92. doi: 10.1128/jb.87.5.988-992.1964.
2
PHYSIOLOGY OF THE ENTEROCOCCI AS RELATED TO THEIR TAXONOMY.
J Bacteriol. 1963 Dec;86(6):1275-82. doi: 10.1128/jb.86.6.1275-1282.1963.
3
ISOLATION AND IDENTIFICATION OF ENTEROCOCCI FROM THE INTESTINAL TRACT OF THE RAT.
J Bacteriol. 1964 Oct;88(4):965-73. doi: 10.1128/jb.88.4.965-973.1964.
4
PYRUVATE FERMENTATION BY STREPTOCOCCUS FAECALIS.
J Bacteriol. 1964 Jul;88(1):4-10. doi: 10.1128/jb.88.1.4-10.1964.
5
FOOD-POISONING POTENTIAL OF THE ENTEROCOCCI.
J Bacteriol. 1963 Apr;85(4):827-32. doi: 10.1128/jb.85.4.827-832.1963.
6
FUMARATE REDUCTION AND ITS ROLE IN THE DIVERSION OF GLUCOSE FERMENTATION BY STREPTOCOCCUS FAECALIS.
J Bacteriol. 1964 Oct;88(4):858-64. doi: 10.1128/jb.88.4.858-864.1964.
7
Activities of arginine dihydrolase and phosphatase in Streptococcus faecalis and Streptococcus faecium.
Appl Microbiol. 1968 Oct;16(10):1543-7. doi: 10.1128/am.16.10.1543-1547.1968.
8
Interdependence of glucose and arginine catabolism in Streptococcus faecalis R. ATCC 8043.
Biochem Biophys Res Commun. 1980 Oct 31;96(4):1480-7. doi: 10.1016/0006-291x(80)91341-8.
9
Transport of lysine and hydroxylysine in Streptococcus faecalis.
J Bacteriol. 1972 Jan;109(1):179-85. doi: 10.1128/jb.109.1.179-185.1972.
10
Molar growth yields of certain lactic acid bacteria as influenced by autolysis.
J Bacteriol. 1968 Jul;96(1):117-25. doi: 10.1128/jb.96.1.117-125.1968.

引用本文的文献

1
Insights into ecology, pathogenesis, and biofilm formation of from functional genomics.
Microbiol Mol Biol Rev. 2025 Mar 27;89(1):e0008123. doi: 10.1128/mmbr.00081-23. Epub 2024 Dec 23.
2
Arginine impacts aggregation, biofilm formation, and antibiotic susceptibility in .
FEMS Microbes. 2024 Sep 25;5:xtae030. doi: 10.1093/femsmc/xtae030. eCollection 2024.
3
Arginine impacts aggregation, biofilm formation, and antibiotic susceptibility in .
bioRxiv. 2024 May 30:2024.05.30.596650. doi: 10.1101/2024.05.30.596650.
4
The transcriptome response of Enterobacter sp. S-33 is modulated by low pH-stress.
Genes Genomics. 2024 Jun;46(6):671-687. doi: 10.1007/s13258-024-01513-x. Epub 2024 Apr 30.
5
Enterococci enhance Clostridioides difficile pathogenesis.
Nature. 2022 Nov;611(7937):780-786. doi: 10.1038/s41586-022-05438-x. Epub 2022 Nov 16.
6
PEGylation increases antitumoral activity of arginine deiminase of Streptococcus pyogenes.
Appl Microbiol Biotechnol. 2022 Jan;106(1):261-271. doi: 10.1007/s00253-021-11728-7. Epub 2021 Dec 15.
7
Overcoming Energetic Barriers in Acetogenic C1 Conversion.
Front Bioeng Biotechnol. 2020 Dec 23;8:621166. doi: 10.3389/fbioe.2020.621166. eCollection 2020.
8
Exploiting biofilm phenotypes for functional characterization of hypothetical genes in .
NPJ Biofilms Microbiomes. 2019 Sep 19;5(1):23. doi: 10.1038/s41522-019-0099-0. eCollection 2019.
9
Transcriptome analysis of Enterococcus faecalis in response to alkaline stress.
Front Microbiol. 2015 Aug 7;6:795. doi: 10.3389/fmicb.2015.00795. eCollection 2015.
10
Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis.
J Bacteriol. 2014 Jun;196(12):2277-89. doi: 10.1128/JB.00051-14. Epub 2014 Apr 11.

本文引用的文献

1
Ammonia production by pathogenic bacteria.
Biochem J. 1940 Jul;34(7):1057-69. doi: 10.1042/bj0341057.
2
The Hydrolysis of Arginine by Streptococci.
J Bacteriol. 1942 Jun;43(6):651-60. doi: 10.1128/jb.43.6.651-660.1942.
3
THE STREPTOCOCCI.
Bacteriol Rev. 1937 Dec;1(1):3-97. doi: 10.1128/br.1.1.3-97.1937.
4
Simplified tests for some amino acid decarboxylases and for the arginine dihydrolase system.
Acta Pathol Microbiol Scand. 1955;36(2):158-72. doi: 10.1111/j.1699-0463.1955.tb04583.x.
5
PHYSIOLOGY OF THE ENTEROCOCCI AS RELATED TO THEIR TAXONOMY.
J Bacteriol. 1963 Dec;86(6):1275-82. doi: 10.1128/jb.86.6.1275-1282.1963.
6
The growth of micro-organisms in relation to their energy supply.
J Gen Microbiol. 1960 Dec;23:457-69. doi: 10.1099/00221287-23-3-457.
7
Tetrazolium reduction as a means of differentiating Streptococcus faecalis from Streptococcus faecium.
J Gen Microbiol. 1956 Feb;14(1):57-68. doi: 10.1099/00221287-14-1-57.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验