Nixon R A, Paskevich P A, Sihag R K, Thayer C Y
Laboratory for Molecular Neuroscience, McLean Hospital, Department of Psychiatry, Belmont, Massachusetts 02178.
J Cell Biol. 1994 Aug;126(4):1031-46. doi: 10.1083/jcb.126.4.1031.
The high molecular weight subunits of neurofilaments, NF-H and NF-M, have distinctively long carboxyl-terminal domains that become highly phosphorylated after newly formed neurofilaments enter the axon. We have investigated the functions of this process in normal, unperturbed retinal ganglion cell neurons of mature mice. Using in vivo pulse labeling with [35S]methionine or [32P]orthophosphate and immunocytochemistry with monoclonal antibodies to phosphorylation-dependent neurofilament epitopes, we showed that NF-H and NF-M subunits of transported neurofilaments begin to attain a mature state of phosphorylation within a discrete, very proximal region along optic axons starting 150 microns from the eye. Ultrastructural morphometry of 1,700-2,500 optic axons at each of seven levels proximal or distal to this transition zone demonstrated a threefold expansion of axon caliber at the 150-microns level, which then remained constant distally. The numbers of neurofilaments nearly doubled between the 100- and 150-microns level and further increased a total of threefold by the 1,200-microns level. Microtubule numbers rose only 30-35%. The minimum spacing between neurofilaments also nearly doubled and the average spacing increased from 30 nm to 55 nm. These results show that carboxyl-terminal phosphorylation expands axon caliber by initiating the local accumulation of neurofilaments within axons as well as by increasing the obligatory lateral spacing between neurofilaments. Myelination, which also began at the 150-microns level, may be an important influence on these events because no local neurofilament accumulation or caliber expansion occurred along unmyelinated optic axons. These findings provide evidence that carboxyl-terminal phosphorylation triggers the radial extension of neurofilament sidearms and is a key regulatory influence on neurofilament transport and on the local formation of a stationary but dynamic axonal cytoskeletal network.
神经丝的高分子量亚基,即NF-H和NF-M,具有显著长的羧基末端结构域,新形成的神经丝进入轴突后,这些结构域会发生高度磷酸化。我们研究了这一过程在成熟小鼠正常、未受干扰的视网膜神经节细胞神经元中的功能。通过用[35S]甲硫氨酸或[32P]正磷酸盐进行体内脉冲标记,以及使用针对磷酸化依赖性神经丝表位的单克隆抗体进行免疫细胞化学分析,我们发现,从距离眼球150微米处开始,沿视神经轴突的一个离散的、非常靠近近端的区域内,运输中的神经丝的NF-H和NF-M亚基开始达到成熟的磷酸化状态。在这个过渡区近端或远端的七个水平上,对1700 - 2500条视神经轴突进行超微结构形态测量,结果表明,在150微米水平处轴突直径扩大了三倍,然后在远端保持恒定。神经丝的数量在100至150微米水平之间几乎翻倍,到1200微米水平时总共又增加了两倍。微管数量仅增加了30 - 35%。神经丝之间的最小间距也几乎翻倍,平均间距从30纳米增加到55纳米。这些结果表明,羧基末端磷酸化通过启动神经丝在轴突内的局部积累以及增加神经丝之间的必要横向间距来扩大轴突直径。髓鞘形成也始于150微米水平,可能对这些事件有重要影响,因为在无髓鞘的视神经轴突上没有发生局部神经丝积累或直径扩大。这些发现提供了证据,表明羧基末端磷酸化触发神经丝侧臂的径向延伸,并且是对神经丝运输以及静止但动态的轴突细胞骨架网络的局部形成的关键调节影响。