Suppr超能文献

光漂白后的荧光微管会移动吗?:对体外及生长中的非洲爪蟾轴突的荧光激光光漂白的重新评估。

Do photobleached fluorescent microtubules move?: re-evaluation of fluorescence laser photobleaching both in vitro and in growing Xenopus axon.

作者信息

Okabe S, Hirokawa N

机构信息

Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan.

出版信息

J Cell Biol. 1993 Mar;120(5):1177-86. doi: 10.1083/jcb.120.5.1177.

Abstract

We previously documented differences in the behavior of microtubules in growing axons of two types of neurons, adult mouse sensory neurons and Xenopus embryonal spinal cord neurons. Namely, the bulk of microtubules was stationary in mouse sensory neurons both by the method of photoactivation of caged-fluorescein-labeled tubulin and photobleaching of fluorescein-labeled tubulin, but the bulk of microtubules did translocate anterogradely by the method of photoactivation. Although these results indicated that the stationary nature of photobleached microtubules in mouse neurons is not an artifact derived from the high levels of energy required for the procedure, it has not yet been settled whether the photobleaching method can detect the movement of microtubules properly. Here we report photobleaching experiments on growing axons of Xenopus embryonal neurons. Anterograde movement of photobleached microtubules was observed at a frequency and translocation rate similar to the values determined by the method of photoactivation. Our results suggest that, under appropriate conditions, the photobleaching method is able to reveal the behavior of microtubules as accurately as the photoactivation method.

摘要

我们之前记录了两种神经元(成年小鼠感觉神经元和非洲爪蟾胚胎脊髓神经元)生长轴突中微管行为的差异。具体而言,通过笼形荧光素标记微管蛋白的光激活方法和荧光素标记微管蛋白的光漂白方法,在小鼠感觉神经元中大部分微管是静止的,但通过光激活方法大部分微管确实会顺行移位。尽管这些结果表明小鼠神经元中光漂白微管的静止特性并非源自该操作所需的高能量水平导致的假象,但光漂白方法是否能够正确检测微管的移动尚未确定。在此,我们报告了对非洲爪蟾胚胎神经元生长轴突的光漂白实验。观察到光漂白微管的顺行移动频率和移位速率与通过光激活方法确定的值相似。我们的结果表明,在适当条件下,光漂白方法能够与光激活方法一样准确地揭示微管的行为。

相似文献

2
Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons.
J Cell Biol. 1992 Apr;117(1):105-20. doi: 10.1083/jcb.117.1.105.
3
Analysis of tubulin transport in nerve processes.
Methods Mol Med. 2007;137:161-73. doi: 10.1007/978-1-59745-442-1_11.
5
Turnover of fluorescently labelled tubulin and actin in the axon.
Nature. 1990 Feb 1;343(6257):479-82. doi: 10.1038/343479a0.
6
Speckle microscopic evaluation of microtubule transport in growing nerve processes.
Nat Cell Biol. 1999 Nov;1(7):399-403. doi: 10.1038/15629.
7
Rapid movement of microtubules in axons.
Curr Biol. 2002 Sep 3;12(17):1496-1501. doi: 10.1016/s0960-9822(02)01078-3.
8
Tubulin transport in neurons.
J Cell Biol. 1996 Jun;133(6):1355-66. doi: 10.1083/jcb.133.6.1355.
9
Transport and turnover of microtubules in frog neurons depend on the pattern of axonal growth.
J Neurosci. 1998 Feb 1;18(3):821-9. doi: 10.1523/JNEUROSCI.18-03-00821.1998.
10
Microtubule polymer assembly and transport during axonal elongation.
J Cell Biol. 1991 Oct;115(2):365-79. doi: 10.1083/jcb.115.2.365.

引用本文的文献

1
Photoactivatable fluorophores and techniques for biological imaging applications.
Photochem Photobiol Sci. 2012 Mar;11(3):460-71. doi: 10.1039/c2pp05342j. Epub 2012 Jan 17.
2
Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons.
J Neurosci. 2009 Sep 9;29(36):11316-29. doi: 10.1523/JNEUROSCI.1942-09.2009.
3
A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of outgrowth.
Biophys J. 2008 Apr 1;94(7):2610-20. doi: 10.1529/biophysj.107.117424. Epub 2008 Jan 4.
4
Live-cell imaging of slow axonal transport in cultured neurons.
Methods Cell Biol. 2003;71:305-23. doi: 10.1016/s0091-679x(03)01014-8.
5
Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching.
Mol Biol Cell. 2001 Oct;12(10):3257-67. doi: 10.1091/mbc.12.10.3257.
6
Glutamate slows axonal transport of neurofilaments in transfected neurons.
J Cell Biol. 2000 Jul 10;150(1):165-76. doi: 10.1083/jcb.150.1.165.
7
Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches.
J Neurosci. 1999 Oct 15;19(20):8894-908. doi: 10.1523/JNEUROSCI.19-20-08894.1999.
8
Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon.
Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11589-94. doi: 10.1073/pnas.96.20.11589.
9
Slow axonal transport of neurofilament protein in cultured neurons.
J Cell Biol. 1999 Feb 8;144(3):447-58. doi: 10.1083/jcb.144.3.447.
10
Transport and turnover of microtubules in frog neurons depend on the pattern of axonal growth.
J Neurosci. 1998 Feb 1;18(3):821-9. doi: 10.1523/JNEUROSCI.18-03-00821.1998.

本文引用的文献

2
Tubulin dynamics in cultured mammalian cells.
J Cell Biol. 1984 Dec;99(6):2175-86. doi: 10.1083/jcb.99.6.2175.
4
Slow components of axonal transport: two cytoskeletal networks.
J Cell Biol. 1980 Aug;86(2):616-23. doi: 10.1083/jcb.86.2.616.
6
Microtubule dynamics in vivo: a test of mechanisms of turnover.
J Cell Biol. 1987 Mar;104(3):395-405. doi: 10.1083/jcb.104.3.395.
7
Microtubule dynamics in interphase cells.
J Cell Biol. 1986 Mar;102(3):1020-31. doi: 10.1083/jcb.102.3.1020.
8
Fluorescent microtubules break up under illumination.
J Cell Biol. 1988 Sep;107(3):1011-24. doi: 10.1083/jcb.107.3.1011.
9
New features of microtubule behaviour observed in vivo.
Nature. 1988 Jul 28;334(6180):356-9. doi: 10.1038/334356a0.
10
Force measurements by micromanipulation of a single actin filament by glass needles.
Nature. 1988 Jul 7;334(6177):74-6. doi: 10.1038/334074a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验