Christensen N L, Hammer B E, Heil B G, Fetterly K
School of Physics and Astronomy, University of Minnesota, Minneapolis 55455, USA.
Phys Med Biol. 1995 Apr;40(4):691-7. doi: 10.1088/0031-9155/40/4/014.
The spatial resolution of positron emission tomography (PET) improves when positron annihilation takes place in a strong magnetic field. In a magnetic field, the Lorentz force restricts positron range perpendicular to the field. Since positron annihilation occurs closer to its point of origin, the positron annihilation point spread function decreases. This was verified experimentally by measuring the spread function of positron annihilation from a 500 mm 68Ge bead imbedded in tissue-equivalent wax. At 5 T the spread function full width at half maximum (FWHM) and the full width at tenth maximum (FWTM) decrease by a factor of 1.42 and 2.09, respectively. Two NaI(Tl) scintillation crystals that interface to a pair of photomultiplier tubes (PMTS) through long lightguides detect positron annihilation at zero field and 5.0 T. Photomultiplier tubes, inoperable in strong magnetic fields, are functional if lightguides bring the photons produced by scintillators within the field to a minimal magnetic field. These tests also demonstrate techniques necessary for combining magnetic resonance imaging (MRI) and PET into one scanner.
当正电子湮灭发生在强磁场中时,正电子发射断层扫描(PET)的空间分辨率会提高。在磁场中,洛伦兹力会限制正电子在垂直于磁场方向上的射程。由于正电子湮灭发生在更靠近其起源点的位置,正电子湮灭点扩散函数会减小。通过测量嵌入组织等效蜡中的500毫米68Ge珠子的正电子湮灭扩散函数,这一点得到了实验验证。在5特斯拉时,扩散函数的半高宽(FWHM)和十分之一最大宽度(FWTM)分别减小了1.42倍和2.09倍。两个通过长光导与一对光电倍增管(PMT)相连的碘化钠(铊)闪烁晶体,可在零磁场和5.0特斯拉下检测正电子湮灭。如果光导将闪烁体在磁场中产生的光子带到最小磁场中,那么在强磁场中无法工作的光电倍增管就能正常工作。这些测试还展示了将磁共振成像(MRI)和PET组合成一台扫描仪所需的技术。