Suppr超能文献

间期细胞中的微管动力学

Microtubule dynamics in interphase cells.

作者信息

Schulze E, Kirschner M

出版信息

J Cell Biol. 1986 Mar;102(3):1020-31. doi: 10.1083/jcb.102.3.1020.

Abstract

The sites of microtubule growth and the kinetics of elongation have been studied in vivo by microinjection of biotin-labeled tubulin and subsequent visualization with immunocytochemical probes. Immunofluorescence and immunoelectron microscopy demonstrate that injected biotin-labeled subunits are incorporated into new segments of growth which are contiguous with unlabeled microtubules. Rapid incorporation occurs by elongation of existing microtubules and new nucleation off the centrosome. The growth rate is 3.6 micron/min and is independent of the concentration of injected labeled tubulin. This rate of incorporation together with turnover of existing microtubules leads to approximately 80% exchange in 15 min. The observed kinetics and pattern of microtubule turnover allow for an evaluation of the relevance of several in vitro models for steady-state dynamics to the in vivo situation. We have also observed a substantial population of quasi-stable microtubules that does not exchange subunits as rapidly as the majority of microtubules and may have specialized functions in the cell.

摘要

通过向体内显微注射生物素标记的微管蛋白并随后用免疫细胞化学探针进行可视化,研究了微管生长的位点和伸长动力学。免疫荧光和免疫电子显微镜显示,注射的生物素标记的亚基被整合到与未标记微管相邻的新生长段中。通过现有微管的伸长和从中心体的新成核作用快速整合。生长速率为3.6微米/分钟,且与注射的标记微管蛋白的浓度无关。这种整合速率连同现有微管的周转导致在15分钟内约80%的交换。观察到的微管周转动力学和模式有助于评估几种体外稳态动力学模型与体内情况的相关性。我们还观察到大量准稳定微管,其亚基交换速度不如大多数微管快,可能在细胞中具有特殊功能。

相似文献

1
Microtubule dynamics in interphase cells.
J Cell Biol. 1986 Mar;102(3):1020-31. doi: 10.1083/jcb.102.3.1020.
2
Dynamics of microtubules bundled by microtubule associated protein 2C (MAP2C).
J Cell Biol. 1993 Jan;120(2):451-65. doi: 10.1083/jcb.120.2.451.
5
Dynamic and stable populations of microtubules in cells.
J Cell Biol. 1987 Feb;104(2):277-88. doi: 10.1083/jcb.104.2.277.
9
Sites of microtubule assembly and disassembly in the mitotic spindle.
Cell. 1986 May 23;45(4):515-27. doi: 10.1016/0092-8674(86)90283-7.

引用本文的文献

3
Cellular mechanisms of traumatic brain injury.
NPJ Biol Phys Mech. 2025;2(1):16. doi: 10.1038/s44341-025-00020-8. Epub 2025 Jun 3.
4
Modulation of microtubule dynamics by monovalent ions.
PNAS Nexus. 2024 Nov 28;4(1):pgae544. doi: 10.1093/pnasnexus/pgae544. eCollection 2025 Jan.
5
Minimal Mechanisms of Microtubule Length Regulation in Living Cells.
Bull Math Biol. 2024 Apr 16;86(5):58. doi: 10.1007/s11538-024-01279-z.
6
Towards understanding centriole elimination.
Open Biol. 2023 Nov;13(11):230222. doi: 10.1098/rsob.230222. Epub 2023 Nov 15.
8
Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton.
Front Cell Dev Biol. 2023 Mar 22;11:1052245. doi: 10.3389/fcell.2023.1052245. eCollection 2023.
9
A live-cell marker to visualize the dynamics of stable microtubules throughout the cell cycle.
J Cell Biol. 2023 May 1;222(5). doi: 10.1083/jcb.202106105. Epub 2023 Mar 2.
10
Modeling microtubule-based transport and anchoring of mRNA.
SIAM J Appl Dyn Syst. 2018;17(4):2855-2881. doi: 10.1137/18m1186083. Epub 2018 Dec 18.

本文引用的文献

1
Head-to-tail polymerization of microtubules in vitro.
J Mol Biol. 1981 Aug 25;150(4):577-99. doi: 10.1016/0022-2836(81)90382-x.
4
Use of Monte Carlo calculations in the study of microtubule subunit kinetics.
Proc Natl Acad Sci U S A. 1983 Dec;80(24):7520-3. doi: 10.1073/pnas.80.24.7520.
5
Steady-state theory of the interference of GTP hydrolysis in the mechanism of microtubule assembly.
Proc Natl Acad Sci U S A. 1983 Dec;80(23):7234-8. doi: 10.1073/pnas.80.23.7234.
6
Dynamic instability of microtubule growth.
Nature. 1984;312(5991):237-42. doi: 10.1038/312237a0.
7
Microtubule assembly nucleated by isolated centrosomes.
Nature. 1984;312(5991):232-7. doi: 10.1038/312232a0.
8
Tubulin dynamics in cultured mammalian cells.
J Cell Biol. 1984 Dec;99(6):2175-86. doi: 10.1083/jcb.99.6.2175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验