Suppr超能文献

机器中的肽设计:通过模拟分子进化开发人工线粒体蛋白前体切割位点

Peptide design in machina: development of artificial mitochondrial protein precursor cleavage sites by simulated molecular evolution.

作者信息

Schneider G, Schuchhardt J, Wrede P

机构信息

Freie Universität Berlin, Institut für Medizinische/Technische Physik und Lasermedizin, AG Molekulare Bioinformatik, Germany.

出版信息

Biophys J. 1995 Feb;68(2):434-47. doi: 10.1016/S0006-3495(95)80205-5.

Abstract

Artificial neural networks were used for extraction of characteristic physiochemical features from mitochondrial matrix metalloprotease target sequences. The amino acid properties hydrophobicity and volume were used for sequence encoding. A window of 12 residues was employed, encompassing positions -7 to +5 of precursors with cleavage sites. Two sets of noncleavage site examples were selected for network training which was performed by an evolution strategy. The weight vectors of the optimized networks were visualized and interpreted by Hinton diagrams. A neural filter system consisting of 13 perceptron-type networks accurately classified the data. It served as the fitness function in a simulated molecular evolution procedure for sequence-oriented de novo design of idealized cleavage sites. A detailed description of the strategy is given. Several putative high-quality cleavage sites were obtained revealing the critical nature of the residues in the positions -2 and -5. Charged residues seem to have a major influence on cleavage site function.

摘要

人工神经网络被用于从线粒体基质金属蛋白酶靶序列中提取特征性的物理化学特征。氨基酸特性疏水性和体积被用于序列编码。采用了12个残基的窗口,涵盖具有切割位点的前体的-7至+5位。为网络训练选择了两组非切割位点示例,训练通过进化策略进行。通过Hinton图对优化网络的权重向量进行可视化和解释。由13个感知器型网络组成的神经过滤系统对数据进行了准确分类。它在用于理想切割位点的序列导向从头设计的模拟分子进化过程中充当适应度函数。给出了该策略的详细描述。获得了几个推定的高质量切割位点,揭示了-2和-5位残基的关键性质。带电荷的残基似乎对切割位点功能有主要影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验