Lah M S, Dixon M M, Pattridge K A, Stallings W C, Fee J A, Ludwig M L
Biophysics Research Division, University of Michigan, Ann Arbor 48109.
Biochemistry. 1995 Feb 7;34(5):1646-60. doi: 10.1021/bi00005a021.
The crystal structure of dimeric Fe(III) superoxide dismutase (SOD) from Escherichia coli (3006 protein atoms, 2 irons, and 281 solvents) has been refined to an R of 0.184 using all observed data between 40.0 and 1.85 A (34,879 reflections). Features of this structure are compared with the refined structure of MnSOD from Thermus thermophilus. The coordination geometry at the Fe site is distorted trigonal bipyramidal, with axial ligands His26 and solvent (proposed to be OH-), and in-plane ligands His73, Asp156, and His160. Reduction of crystals to the Fe(II) state does not result in significant changes in metal-ligand geometry (R = 0.188 for data between 40.0 and 1.80 A). The arrangement of iron ligands in Fe(II) and Fe(III)SOD closely matches the Mn coordination found in MnSOD from T. thermophilus [Ludwig, M.L., Metzger, A.L., Pattridge, K.A., & Stallings, W.C. (1991) J. Mol. Biol. 219, 335-358]. Structures of the Fe(III) azide (40.0-1.8 A, R = 0.186) and Mn(III) azide (20.0-1.8 A, R = 0.179) complexes, reported here, reveal azide bound as a sixth ligand with distorted octahedral geometry at the metal; the in-plane ligand-Fe-ligand and ligand-Mn-ligand angles change by 20-30 degrees to coordinate azide as a sixth ligand. However, the positions of the distal azide nitrogens are different in the FeSOD and MnSOD complexes. The geometries of the Fe(III), Fe(II), and Fe(III)-azide species suggest a reaction mechanism for superoxide dismutation in which the metal alternates between five- and six-coordination. A reaction scheme in which the ligated solvent acts as a proton acceptor in the first half-reaction [formation of Fe(II) and oxygen] is consistent with the pH dependence of the kinetic parameters and spectroscopic properties of Fe superoxide dismutase.
来自大肠杆菌的二聚体铁(III)超氧化物歧化酶(SOD)(3006个蛋白质原子、2个铁原子和281个溶剂分子)的晶体结构,利用40.0至1.85 Å之间的所有观测数据(34879个反射)精修至R值为0.184。将该结构的特征与嗜热栖热菌锰超氧化物歧化酶的精修结构进行了比较。铁位点的配位几何结构为扭曲的三角双锥,轴向配体为His26和溶剂分子(推测为OH-),面内配体为His73、Asp156和His160。将晶体还原至铁(II)状态不会导致金属-配体几何结构发生显著变化(40.0至1.80 Å之间的数据R值为0.188)。铁(II)和铁(III)超氧化物歧化酶中铁配体的排列与嗜热栖热菌锰超氧化物歧化酶中的锰配位紧密匹配[路德维希,M.L.,梅茨格,A.L.,帕特里奇,K.A.,& 斯托林斯,W.C.(1991年)《分子生物学杂志》219卷,335 - 358页]。本文报道的铁(III)叠氮化物(40.0 - 1.8 Å,R = 0.186)和锰(III)叠氮化物(20.0 - 1.8 Å,R = 0.179)配合物的结构表明,叠氮化物作为第六个配体结合,在金属处具有扭曲的八面体几何结构;面内配体-铁-配体和面内配体-锰-配体的角度变化20 - 30度以配位叠氮化物作为第六个配体。然而,铁超氧化物歧化酶和锰超氧化物歧化酶配合物中远端叠氮氮原子的位置不同。铁(III)、铁(II)和铁(III)-叠氮化物物种的几何结构表明了超氧化物歧化的反应机制,其中金属在五配位和六配位之间交替。一种反应方案,即连接的溶剂分子在上半反应[形成铁(II)和氧气]中作为质子受体,与铁超氧化物歧化酶动力学参数和光谱性质的pH依赖性一致。