Suppr超能文献

具有两个标记位点的双基因座疾病模型:患病同胞对检验的效能

Two-locus disease models with two marker loci: the power of affected-sib-pair tests.

作者信息

Knapp M, Seuchter S A, Baur M P

机构信息

Institute for Medical Statistics, University of Bonn, Germany.

出版信息

Am J Hum Genet. 1994 Nov;55(5):1030-41.

Abstract

Recently, Schork et al. found that two-trait-locus, two-marker-locus (parametric) linkage analysis can provide substantially more linkage information than can standard one-trait-locus, one-marker-locus methods. However, because of the increased burden of computation, Schork et al. do not expect that their approach will be applied in an initial genome scan. Further, the specification of a suitable two-locus segregation model can be crucial. Affected-sibpair tests are computationally simple and do not require an explicit specification of the disease model. In the past, however, these tests mainly have been applied to data with a single marker locus. Here, we consider sib-pair tests that make it possible to analyze simultaneously two marker loci. The power of these tests is investigated for different (epistatic and heterogeneous) two-trait-locus models, each trait locus being linked to one of the marker loci. We compare these tests both with the test that is optimal for a certain model and with the strategy that analyzes each marker locus separately. The results indicate that a straightforward extension of the well-known mean test for two marker loci can be much more powerful than single-marker-locus analysis and that is power is only slightly inferior to the power of the optimal test.

摘要

最近,斯科克等人发现,双性状基因座、双标记基因座(参数化)连锁分析比标准的单性状基因座、单标记基因座方法能提供更多的连锁信息。然而,由于计算负担增加,斯科克等人预计他们的方法不会用于初始基因组扫描。此外,合适的双基因座分离模型的设定可能至关重要。受累同胞对检验计算简单,且不需要明确设定疾病模型。然而,过去这些检验主要应用于单标记基因座的数据。在此,我们考虑能够同时分析两个标记基因座的同胞对检验。针对不同的(上位性和异质性)双性状基因座模型研究了这些检验的效能,每个性状基因座与其中一个标记基因座连锁。我们将这些检验与针对特定模型最优的检验以及分别分析每个标记基因座的策略进行比较。结果表明,对两个标记基因座的著名均值检验进行直接扩展,其效能可能远高于单标记基因座分析,且其效能仅略低于最优检验。

相似文献

8
Multilocus linkage tests based on affected relative pairs.基于患病亲属对的多位点连锁检验。
Am J Hum Genet. 2000 Apr;66(4):1273-86. doi: 10.1086/302847. Epub 2000 Mar 21.

引用本文的文献

1
Genetic linkage analysis in the age of whole-genome sequencing.全基因组测序时代的基因连锁分析
Nat Rev Genet. 2015 May;16(5):275-84. doi: 10.1038/nrg3908. Epub 2015 Mar 31.
3
Linkage analysis in the next-generation sequencing era.下一代测序时代的连锁分析。
Hum Hered. 2011;72(4):228-36. doi: 10.1159/000334381. Epub 2011 Dec 23.
6
Bayesian intervals for linkage locations.贝叶斯连锁定位区间。
Genet Epidemiol. 2009 Nov;33(7):604-16. doi: 10.1002/gepi.20412.
8
A forest-based approach to identifying gene and gene gene interactions.一种基于森林模型的基因及基因-基因相互作用识别方法。
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19199-203. doi: 10.1073/pnas.0709868104. Epub 2007 Nov 28.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验