Lima J A, Jeremy R, Guier W, Bouton S, Zerhouni E A, McVeigh E, Buchalter M B, Weisfeldt M L, Shapiro E P, Weiss J L
Department of Medicine, Johns Hopkins University, Baltimore, Maryland.
J Am Coll Cardiol. 1993 Jun;21(7):1741-51. doi: 10.1016/0735-1097(93)90397-j.
This study examined whether the correlation of systolic wall thickening (%WT) by nuclear magnetic resonance (NMR) imaging with wall thickening by sonomicrometry (SM) is improved by using a three-dimensional volume element model of the left ventricular wall.
Left ventricular wall obliquity with respect to the imaging plane causes overestimation of wall thickness by planar imaging techniques. Wall thickness perpendicular to the endocardial surface can be accurately calculated by three-dimensional reconstruction of left ventricular wall segments.
Sonomicrometers were placed transmurally in 11 dogs (left anterior descending artery territory) with an imaging marker, visible on NMR imaging, sewn to the epicardial crystal. Two adjacent NMR short-axis image planes were radially segmented by four perpendicular spin-saturated planes (tags), dividing the myocardium into eight volume elements, one of which contained the sonomicrometer crystal pair. Left ventricular thickness and thickening were calculated by four methods: 1) linear = distance between epicardium and endocardium at midpoint in the segment with the sonomicrometer; 2) planar = area of that segment divided by the mean of the endocardial and epicardial arc lengths; 3) biplanar = average of wall thicknesses calculated by the planar method from the segment with sonomicrometers and the corresponding segment located in the adjacent short-axis imaging plane; and 4) three-dimensional = volume of the element with the sonomicrometers divided by the mean of the endocardial and epicardial surface areas.
Regressions for all methods using pooled data from control periods and during ischemia: Linear %WT = 0.59 + 1.31 SM%WT (r = 0.71, SEE = 0.28, p < 0.0002) Planar %WT = 1.43 + 1.62 SM%WT (r = 0.87, SEE = 0.19, p < 0.0001) Biplanar %WT = 2.09 + 1.46 SM%WT (r = 0.90, SEE = 0.15, p < 0.0001) Three-dimensional %WT = 0.19 + 1.49 SM%WT (r = 0.95, SEE = 0.10, p < 0.0001)
Nuclear magnetic resonance imaging with tissue tagging allows accurate noninvasive assessment of systolic wall thickening. The three-dimensional volume element approach, by accounting for obliquity between the image plane and the left ventricular wall, provides the strongest correlation between NMR imaging and percent systolic wall thickening by sonomicrometer crystals.
本研究探讨通过使用左心室壁的三维体积元模型,核磁共振(NMR)成像测得的收缩期室壁增厚率(%WT)与超声微测法(SM)测得的室壁增厚之间的相关性是否得到改善。
左心室壁相对于成像平面的倾斜会导致平面成像技术高估室壁厚度。通过左心室壁节段的三维重建可以准确计算垂直于心内膜表面的室壁厚度。
将超声微测仪经壁放置在11只犬(左前降支区域)体内,并将一个在NMR成像上可见的成像标记缝在心肌外膜晶体上。两个相邻的NMR短轴图像平面通过四个垂直的自旋饱和平面(标记)进行径向分割,将心肌分为八个体积元,其中一个包含超声微测仪晶体对。左心室厚度和增厚通过四种方法计算:1)线性法=在有超声微测仪的节段中点处的心外膜与心内膜之间的距离;2)平面法=该节段的面积除以心内膜和心外膜弧长的平均值;3)双平面法=通过平面法从有超声微测仪的节段以及相邻短轴成像平面中的相应节段计算出的室壁厚度的平均值;4)三维法=包含超声微测仪的单元的体积除以心内膜和心外膜表面积的平均值。
使用对照期和缺血期的汇总数据对所有方法进行回归分析:线性%WT = 0.59 + 1.31×SM%WT(r = 0.71,标准误= 0.28,p < 0.0002);平面%WT = 1.43 + 1.62×SM%WT(r = 0.87,标准误= 0.19,p < 0.0001);双平面%WT = 2.09 + 1.46×SM%WT(r = 0.90,标准误= 0.15,p < 0.0001);三维%WT = 0.19 + 1.49×SM%WT(r = 0.95,标准误= 0.10,p < 0.0001)
带有组织标记的核磁共振成像能够准确无创地评估收缩期室壁增厚。通过考虑图像平面与左心室壁之间的倾斜度,三维体积元方法在NMR成像与超声微测仪晶体测得的收缩期室壁增厚百分比之间提供了最强的相关性。