Damude H G, Ferro V, Withers S G, Warren R A
Protein Engineering Network of Centres of Excellence, University of British Columbia, Vancouver, Canada.
Biochem J. 1996 Apr 15;315 ( Pt 2)(Pt 2):467-72. doi: 10.1042/bj3150467.
Values of kcat. and Km for the hydrolysis of cellotetraose, cellotriose, beta-cellobiosyl fluoride and various beta-aryl cellobiosides by endoglucanase A (CenA) from Cellulomonas fimi indicate that specific binding interactions between the reducing-end glucose residues of cellotetraose and cellotriose and the enzyme at the transition state provide enormous stabilization, endowing glucose with the "effective leaving group ability' of 2,4-dinitrophenol. As has been seen with several other inverting glycosidases, CenA hydrolyses the "wrong' anomer of its glycosyl fluoride substrate, alpha-cellobiosyl fluoride, according to non-Michaelian kinetics. This indicates that CenA carries out this hydrolysis by a mechanism involving binding of two substrate molecules in the active site (Hehre, Brewer and Genghof (1979) J. Biol. Chem. 254, 5942-5950] in contrast with that reported for cellobiohydrolase II, another family-6 enzyme [Konstantinidis, Marsden and Sinnott (1993) Biochem. J. 291, 833-838]. The pH profiles for wild-type CenA indicate that kcat. for CenA depends on the presence of both a protonated group and a deprotonated group for full activity, consistent with the presence of an acid and a base catalyst at the active site. By contrast, the profile for the Asp252Ala mutant of CenA shows a dependence only on a base-catalytic group, thereby confirming the role of Asp-252 as an acid catalyst. These results show that hydrolysis by CenA occurs by a typical inverting mechanism involving both acid and base catalysis, as first proposed by Koshland. It also suggests that endoglucanases from family 6 may function by fundamentally different mechanisms for exoglucanases in this family.
纤维单胞菌内切葡聚糖酶A(CenA)对纤维四糖、纤维三糖、β - 纤维二糖氟化物及各种β - 芳基纤维二糖苷的水解反应的催化常数(kcat.)和米氏常数(Km)值表明,纤维四糖和纤维三糖的还原端葡萄糖残基与酶在过渡态之间的特异性结合相互作用提供了巨大的稳定性,赋予葡萄糖2,4 - 二硝基苯酚的“有效离去基团能力”。正如在其他几种转化糖苷酶中所观察到的那样,CenA根据非米氏动力学水解其糖基氟化物底物α - 纤维二糖氟化物的“错误”异头物。这表明CenA通过一种涉及在活性位点结合两个底物分子的机制进行这种水解反应(Hehre、Brewer和Genghof,1979年,《生物化学杂志》254卷,5942 - 5950页),这与另一种6家族酶纤维二糖水解酶II的报道情况相反(Konstantinidis、Marsden和Sinnott,1993年,《生物化学杂志》291卷,833 - 838页)。野生型CenA的pH曲线表明,CenA的催化常数(kcat.)取决于同时存在一个质子化基团和一个去质子化基团才能达到完全活性,这与活性位点存在一个酸催化剂和一个碱催化剂相一致。相比之下,CenA的Asp252Ala突变体的曲线仅显示对一个碱催化基团的依赖性,从而证实了Asp - 252作为酸催化剂的作用。这些结果表明,CenA的水解反应是通过一种典型的转化机制进行的,该机制涉及酸催化和碱催化,这是Koshland首次提出的。这也表明6家族的内切葡聚糖酶可能通过与该家族外切葡聚糖酶根本不同的机制发挥作用。