Burke D H, Hoffman D C, Brown A, Hansen M, Pardi A, Gold L
Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO 80309-0347, USA.
Chem Biol. 1997 Nov;4(11):833-43. doi: 10.1016/s1074-5521(97)90116-2.
The problem of how macromolecules adopt specific shapes to recognize small molecules in their environment is readily addressed through in vitro selections (the SELEX protocol). RNA-antibiotic interactions are particularly attractive systems for study because they provide an opportunity to expand our understanding of molecular recognition by RNA and to facilitate ribosomal modeling. Specifically, the antibiotic chloramphenicol (Cam) naturally binds bacterial ribosomes in the 'peptidyl transferase loop' of 23S ribosomal RNA to inhibit peptide bond formation.
We identified Cam-binding RNA molecules ('aptamers') from two independent initial random RNA populations. Boundary determinations, ribonuclease S1 sensitivity analyses and the activity of truncated minimal RNAs identified a structural motif that is shared by sequences from both selections. The pseudosymmetric motif consists of a highly conserved central helix of five to six base pairs flanked by A-rich bulges and additional helices. Addition of Cam prior to ribonuclease S1 protected nucleotides in the conserved cores from cleavage. Reselection from a pool of mutated variants of the minimal aptamer further refined the sequence requirements for binding. Finally, we used proton nuclear magnetic resonance (NMR) to establish a 1:1 RNA: Cam stoichiometry of the complex. Both the protection and NMR data both show that Cam stabilizes the active fold of this aptamer.
There are many different RNA sequences that can bind Cam. The Cam aptamers that we examined have a well-defined secondary structure with a binding pocket that appears to be stabilized by Cam. This RNA motif superficially resembles the Cam-binding site in 23S rRNA, although further work is needed to establish the significance of these similarities.
通过体外筛选(SELEX 方案)可以很容易地解决大分子如何采用特定形状来识别其环境中的小分子这一问题。RNA 与抗生素的相互作用是特别有吸引力的研究系统,因为它们为扩展我们对 RNA 分子识别的理解以及促进核糖体建模提供了机会。具体而言,抗生素氯霉素(Cam)天然结合 23S 核糖体 RNA 的“肽基转移酶环”中的细菌核糖体,以抑制肽键形成。
我们从两个独立的初始随机 RNA 群体中鉴定出了结合 Cam 的 RNA 分子(“适配体”)。边界确定、核糖核酸酶 S1 敏感性分析以及截短的最小 RNA 的活性确定了两个筛选序列共有的结构基序。假对称基序由一个高度保守的五到六个碱基对的中央螺旋组成,两侧是富含 A 的凸起和其他螺旋。在核糖核酸酶 S1 处理之前添加 Cam 可保护保守核心中的核苷酸不被切割。从最小适配体的突变变体库中重新筛选进一步完善了结合的序列要求。最后,我们使用质子核磁共振(NMR)确定了复合物的 1:1 RNA:Cam 化学计量比。保护和 NMR 数据均表明 Cam 稳定了该适配体的活性折叠。
有许多不同的 RNA 序列可以结合 Cam。我们研究的 Cam 适配体具有明确的二级结构,带有一个似乎由 Cam 稳定的结合口袋。这种 RNA 基序表面上类似于 23S rRNA 中的 Cam 结合位点,尽管需要进一步的工作来确定这些相似性的意义。