Suppr超能文献

自动图像配准:II. 线性和非线性模型的受试者间验证

Automated image registration: II. Intersubject validation of linear and nonlinear models.

作者信息

Woods R P, Grafton S T, Watson J D, Sicotte N L, Mazziotta J C

机构信息

Department of Neurology, UCLA School of Medicine, USA.

出版信息

J Comput Assist Tomogr. 1998 Jan-Feb;22(1):153-65. doi: 10.1097/00004728-199801000-00028.

Abstract

PURPOSE

Our goal was to validate linear and nonlinear intersubject image registration using an automated method (AIR 3.0) based on voxel intensity.

METHOD

PET and MRI data from 22 normal subjects were registered to corresponding averaged PET or MRI brain atlases using several specific linear and nonlinear spatial transformation models with an automated algorithm. Validation was based on anatomically defined landmarks.

RESULTS

Automated registration produced results that were superior to a manual nine parameter variant of the Talairach registration method. Increasing the degrees of freedom in the spatial transformation model improved the accuracy of automated intersubject registration.

CONCLUSION

Linear or nonlinear automated intersubject registration based on voxel intensities is computationally practical and produces more accurate alignment of homologous landmarks than manual nine parameter Talairach registration. Nonlinear models provide better registration than linear models but are slower.

摘要

目的

我们的目标是使用基于体素强度的自动方法(AIR 3.0)验证线性和非线性的受试者间图像配准。

方法

使用几种特定的线性和非线性空间变换模型及自动算法,将22名正常受试者的PET和MRI数据与相应的平均PET或MRI脑图谱进行配准。验证基于解剖学定义的标志物。

结果

自动配准产生的结果优于Talairach配准方法的手动九参数变体。增加空间变换模型中的自由度可提高自动受试者间配准的准确性。

结论

基于体素强度的线性或非线性自动受试者间配准在计算上是可行的,并且比手动九参数Talairach配准能更准确地对齐同源标志物。非线性模型比线性模型提供更好的配准,但速度较慢。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验