Liu Z, Golowasch J, Marder E, Abbott L F
Volen Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA.
J Neurosci. 1998 Apr 1;18(7):2309-20. doi: 10.1523/JNEUROSCI.18-07-02309.1998.
Membrane channels are subject to a wide variety of regulatory mechanisms that can be affected by activity. We present a model of a stomatogastric ganglion (STG) neuron in which several Ca2+-dependent pathways are used to regulate the maximal conductances of membrane currents in an activity-dependent manner. Unlike previous models of this type, the regulation and modification of maximal conductances by electrical activity is unconstrained. The model has seven voltage-dependent membrane currents and uses three Ca2+ sensors acting on different time scales. Starting from random initial conditions over a given range, the model sets the maximal conductances for its active membrane currents to values that produce a predefined target pattern of activity approximately 90% of the time. In these models, the same pattern of electrical activity can be produced by a range of maximal conductances, and this range is compared with voltage-clamp data from the lateral pyloric neuron of the STG. If the electrical activity of the model neuron is perturbed, the maximal conductances adjust to restore the original pattern of activity. When the perturbation is removed, the activity pattern is again restored after a transient adjustment period, but the conductances may not return to their initial values. The model suggests that neurons may regulate their conductances to maintain fixed patterns of electrical activity, rather than fixed maximal conductances, and that the regulation process requires feedback systems capable of reacting to changes of electrical activity on a number of different time scales.
膜通道受到多种可受活动影响的调节机制的作用。我们提出了一种口胃神经节(STG)神经元模型,其中几种钙依赖途径以活动依赖的方式用于调节膜电流的最大电导。与以往此类模型不同,电活动对最大电导的调节和修饰不受限制。该模型有七种电压依赖性膜电流,并使用三个作用于不同时间尺度的钙传感器。从给定范围内的随机初始条件开始,该模型将其活动膜电流的最大电导设定为在大约90%的时间内产生预定义目标活动模式的值。在这些模型中,一系列最大电导可产生相同的电活动模式,并将此范围与来自STG侧幽门神经元的电压钳数据进行比较。如果模型神经元的电活动受到干扰,最大电导会进行调整以恢复原始活动模式。当干扰消除后,经过短暂的调整期,活动模式会再次恢复,但电导可能不会恢复到其初始值。该模型表明,神经元可能调节其电导以维持固定的电活动模式,而非固定的最大电导,并且调节过程需要能够在多个不同时间尺度上对电活动变化做出反应的反馈系统。