Xu C, Zhou T, Kuroda M, Rosen B P
Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
J Biochem. 1998 Jan;123(1):16-23. doi: 10.1093/oxfordjournals.jbchem.a021904.
Resistance to antibiotics and other chemotherapeutic agents is becoming a wide spread health issue. The biochemical mechanisms of resistance vary, but active efflux of the toxic agents is one of the most common. Bacterial resistances to metals provide good model systems for transport-related resistances. One of the best understood metal resistance systems is the product of the ars operon, which provides resistance to arsenicals and antimonials. As a reflection of the ubiquity of arsenic in the environment, ars operons are found in all species of bacteria, carried in chromosomes, plasmids, and transposons. This review focuses on the biochemistry of the proteins of the ars operon of R-factor R773. The system is novel in several respects. First, it is regulated at the transcriptional and allosteric levels, and regulation is effected through cysteine thiol interaction with As(III) or Sb(III). Thus soft metal-thiol chemistry provides a high affinity digital switch to turn the regulated protein on with rapidity. The transport system that provides resistance, on the other hand, uses oxyanions of arsenic or antimony as substrates. This nonmetal chemistry allows for low affinity interactions of the membrane transporter with substrate, conductive with translocation and release of substrate on the outside of the cell membrane. Second, the transporter is uniquely capable of coupling to either electrochemical energy as a secondary carrier protein or the chemical energy of ATP when binding of a catalytic subunit converts it into an anion-translocating ATPase.
对抗生素和其他化疗药物的耐药性正成为一个广泛存在的健康问题。耐药的生化机制各不相同,但有毒物质的主动外排是最常见的机制之一。细菌对金属的耐药性为与转运相关的耐药性提供了良好的模型系统。人们了解得最清楚的金属耐药系统之一是ars操纵子的产物,它赋予对砷化合物和锑化合物的耐药性。作为砷在环境中普遍存在的一种反映,ars操纵子存在于所有细菌物种中,存在于染色体、质粒和转座子中。本综述聚焦于R因子R773的ars操纵子蛋白的生物化学。该系统在几个方面具有新颖性。首先,它在转录和别构水平上受到调控,并且调控是通过半胱氨酸硫醇与As(III)或Sb(III)的相互作用实现的。因此,软金属 - 硫醇化学提供了一个高亲和力的数字开关,能够迅速开启被调控的蛋白。另一方面,提供耐药性的转运系统以砷或锑的含氧阴离子作为底物。这种非金属化学使得膜转运蛋白与底物之间能够进行低亲和力相互作用,有利于底物在细胞膜外侧的转运和释放。其次,当一个催化亚基的结合将其转化为阴离子转运ATP酶时,该转运蛋白独特地能够作为二级载体蛋白与电化学能偶联,或者与ATP的化学能偶联。