Unal N, Kanhai J K, Buijk S L, Pompe J C, Holland W P, Gültuna I, Ince C, Saygin B, Bruining H A
Department of Anesthesiology and Reanimation, Medical Faculty, University of Ankara, Turkey.
Intensive Care Med. 1998 Feb;24(2):138-46. doi: 10.1007/s001340050535.
The purpose of this study was to assess and compare the humidification, heating, and resistance properties of three commercially available heat-moisture exchangers (HMEs). To mimic clinical conditions, a previously validated, new, realistic experimental set-up and measurement protocol was used.
Prospective, comparative experimental study.
Surgical Intensive Care Unit, University Hospital of Rotterdam.
An experimental set-up consisting of a patient model, measurement systems, and ventilator and three different HME types.
The air flow, pressure in the ventilation circuit, pressure difference over the HME, and partial water vapour pressure and temperature at each side of the HMEs were measured. Measurements were repeated every 30 min during the first 2 h and every hour up to 24 h for each HME at six different ventilator settings. The mean inspiratory and maximum expiratory resistance, flow-weighted mean absolute humidity and temperature outputs, and humidification and heating efficiencies of HMEs were calculated.
The Dar Hygroster had the highest humidity output, temperature output, humidification efficiency, and heating efficiency values throughout the study (32.8 +/- 21. mg/l, 32.2 +/- 0.8 degrees C, 86.3 +/- 2.3%, and 0.9 +/- 0.01%, respectively) in comparison to the Humid-Vent Filter (25.3 +/- 3.2 mg/l, 31.9 +/- 0.8 degrees C, 72.2 +/- 5.3%, 0.9 +/- 0.02%, respectively) and the Pall Ultipor BB100 breathing circuit filter (23.4 +/- 3 mg/l, 28.3 +/- 0.7 degrees C, 68.8 +/- 5.9%, 0.8 +/- 0.02%, respectively). The inspiratory and expiratory resistance of the HMEs remained below clinically acceptable maximum values (2.60 +/- 0.04 and 2.45 +/- 0.05 cmH2O/l per s, respectively).
The Dar Hygroster filter was found to have the highest humidity and temperature output of all three HMEs, the Humid-Vent filter had a satisfactory humidity output only at low tidal volume flow rate and minute volume settings, whereas the Pall Ultipore BB 100 never achieved a sufficient humidity and temperature output.
本研究旨在评估和比较三种市售热湿交换器(HME)的加湿、加热及阻力特性。为模拟临床情况,采用了先前经验证的新型、逼真的实验装置和测量方案。
前瞻性、对比实验研究。
鹿特丹大学医学中心外科重症监护病房。
由患者模型、测量系统、呼吸机及三种不同类型的HME组成的实验装置。
测量气流、通气回路压力、HME两端的压力差以及HME两侧的部分水蒸气压和温度。在六种不同的呼吸机设置下,对每个HME在前2小时内每30分钟重复测量一次,直至24小时每小时测量一次。计算HME的平均吸气和最大呼气阻力、流量加权平均绝对湿度和温度输出以及加湿和加热效率。
在整个研究过程中,与Humid-Vent Filter(分别为25.3±3.2mg/l、31.9±0.8℃、72.2±5.3%、0.9±0.02%)和Pall Ultipor BB100呼吸回路过滤器(分别为23.4±3mg/l、28.3±0.7℃、68.8±5.9%、0.8±0.02%)相比,Dar Hygroster的湿度输出、温度输出、加湿效率和加热效率值最高(分别为32.8±21mg/l、32.2±0.8℃、86.3±2.3%、0.9±0.01%)。HME的吸气和呼气阻力均保持在临床可接受的最大值以下(分别为2.60±0.04和2.45±0.05cmH2O/l per s)。
发现Dar Hygroster过滤器在所有三种HME中具有最高的湿度和温度输出,Humid-Vent过滤器仅在低潮气量流速和分钟通气量设置下具有令人满意的湿度输出,而Pall Ultipore BB 100从未实现足够的湿度和温度输出。