Suppr超能文献

利用介电泳/重力场流分馏法分离聚苯乙烯微珠。

Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation.

作者信息

Wang X B, Vykoukal J, Becker F F, Gascoyne P R

机构信息

Department of Experimental Pathology, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA.

出版信息

Biophys J. 1998 May;74(5):2689-701. doi: 10.1016/S0006-3495(98)77975-5.

Abstract

The characterization of a dielectrophoretic/gravitational field-flow-fractionation (DEP/G-FFF) system using model polystyrene (PS) microbeads is presented. Separations of PS beads of different surface functionalization (COOH and none) and different sizes (6, 10, and 15 microm in diameter) are demonstrated. To investigate the factors influencing separation performance, particle elution times were determined as a function of particle suspension conductivity, fluid flow rate, and applied field frequency and voltage. Experimental data were analyzed using a previously reported theoretical model and good agreement between theory and experiment was found. It was shown that separation of PS beads was based on the differences in their effective dielectric properties. Particles possessing different dielectric properties were positioned at different heights in a fluid-flow profile in a thin chamber by the balance of DEP and gravitational forces, transported at different velocities under the influence of the fluid flow, and thereby separated. To explore hydrodynamic (HD) lift effects, velocities of PS beads were determined as a function of fluid flow rate in the separation chamber when no DEP field was applied. In this case, particle equilibrium height positions were governed solely by the balance of HD lift and gravitational forces. It was concluded that under the experimental conditions reported here, the DEP force was the dominant factor in controlling particle equilibrium height and that HD lift force played little role in DEP/G-FFF operation. Finally, the influence of various experimental parameters on separation performance was discussed for the optimization of DEP/G-FFF.

摘要

本文介绍了一种使用模型聚苯乙烯(PS)微珠的介电泳/重力场流分馏(DEP/G-FFF)系统的特性。展示了不同表面功能化(COOH和无功能化)以及不同尺寸(直径6、10和15微米)的PS微珠的分离情况。为了研究影响分离性能的因素,确定了颗粒洗脱时间与颗粒悬浮液电导率、流体流速以及施加场频率和电压的函数关系。使用先前报道的理论模型对实验数据进行了分析,发现理论与实验结果吻合良好。结果表明,PS微珠的分离基于其有效介电性能的差异。具有不同介电性能的颗粒通过介电泳力和重力的平衡,在薄腔室的流体流动剖面中处于不同高度,在流体流动的影响下以不同速度传输,从而实现分离。为了探究流体动力学(HD)升力效应,在不施加DEP场的情况下,确定了PS微珠的速度与分离腔室中流体流速的函数关系。在这种情况下,颗粒平衡高度位置仅由HD升力和重力平衡决定。得出的结论是,在此处报道的实验条件下,DEP力是控制颗粒平衡高度的主导因素,而HD升力在DEP/G-FFF操作中作用很小。最后,讨论了各种实验参数对分离性能的影响,以优化DEP/G-FFF。

相似文献

1
Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation.
Biophys J. 1998 May;74(5):2689-701. doi: 10.1016/S0006-3495(98)77975-5.
4
Introducing dielectrophoresis as a new force field for field-flow fractionation.
Biophys J. 1997 Aug;73(2):1118-29. doi: 10.1016/S0006-3495(97)78144-X.
6
Effects of comprehensive function of factors on retention behavior of microparticles in gravitational field-flow fractionation.
J Chromatogr B Analyt Technol Biomed Life Sci. 2016 Sep 15;1031:1-7. doi: 10.1016/j.jchromb.2016.07.009. Epub 2016 Jul 5.
7
Dielectrophoretic separation of bioparticles in microdevices: a review.
Electrophoresis. 2014 Mar;35(5):691-713. doi: 10.1002/elps.201300424. Epub 2014 Feb 4.
8
Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes.
Electrophoresis. 2009 Nov;30(21):3707-17. doi: 10.1002/elps.200900079.
9
Separation of particles by pulsed dielectrophoresis.
Lab Chip. 2009 Aug 21;9(16):2306-12. doi: 10.1039/b906202e. Epub 2009 Jun 29.

引用本文的文献

2
A review of tumor treating fields (TTFields): advancements in clinical applications and mechanistic insights.
Radiol Oncol. 2023 Sep 4;57(3):279-291. doi: 10.2478/raon-2023-0044. eCollection 2023 Sep 1.
3
Dielectrophoretic separation of blood cells.
Biomed Microdevices. 2022 Aug 25;24(3):30. doi: 10.1007/s10544-022-00623-1.
5
High-Sensitivity in Dielectrophoresis Separations.
Micromachines (Basel). 2020 Apr 9;11(4):391. doi: 10.3390/mi11040391.
7
Simple microfluidic device for detecting the negative dielectrophoresis of DNA labeled microbeads.
Biomicrofluidics. 2019 Nov 12;13(6):064109. doi: 10.1063/1.5124419. eCollection 2019 Nov.
9
Microfluidic dielectrophoretic sorter using gel vertical electrodes.
Biomicrofluidics. 2014 May 23;8(3):034105. doi: 10.1063/1.4880244. eCollection 2014 May.
10
Isolation of circulating tumor cells by dielectrophoresis.
Cancers (Basel). 2014 Mar 12;6(1):545-79. doi: 10.3390/cancers6010545.

本文引用的文献

1
Electrorotation of colloidal particles and cells depends on surface charge.
Biophys J. 1997 Sep;73(3):1617-26. doi: 10.1016/S0006-3495(97)78193-1.
2
Introducing dielectrophoresis as a new force field for field-flow fractionation.
Biophys J. 1997 Aug;73(2):1118-29. doi: 10.1016/S0006-3495(97)78144-X.
3
Rapid swelling of a CHO-K1 aspartate/glutamate transport mutant in hypo-osmotic medium.
J Membr Biol. 1997 Mar 15;156(2):131-9. doi: 10.1007/s002329900195.
4
Comparative study of human red blood cell analysis with three different field-flow fractionation systems.
J Chromatogr B Biomed Appl. 1996 Nov 15;686(2):177-87. doi: 10.1016/s0378-4347(96)00186-7.
5
Separation and characterization of red blood cells with different membrane deformability using steric field-flow fractionation.
J Chromatogr B Biomed Appl. 1995 Dec 1;674(1):39-47. doi: 10.1016/0378-4347(95)00297-0.
6
Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials.
Science. 1993 Jun 4;260(5113):1456-65. doi: 10.1126/science.8502990.
8
Electrical field-flow fractionation in particle separation. 1. Monodisperse standards.
Anal Chem. 1993 Jul 1;65(13):1764-72. doi: 10.1021/ac00061a021.
9
Separation of human breast cancer cells from blood by differential dielectric affinity.
Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):860-4. doi: 10.1073/pnas.92.3.860.
10
Differentiation of viable and non-viable bacterial biofilms using electrorotation.
Biochim Biophys Acta. 1995 Aug 17;1245(1):85-93. doi: 10.1016/0304-4165(95)00072-j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验