Suppr超能文献

预测我们自身行为的后果:感觉运动情境估计的作用。

Predicting the consequences of our own actions: the role of sensorimotor context estimation.

作者信息

Blakemore S J, Goodbody S J, Wolpert D M

机构信息

Sobell Department of Neurophysiology, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.

出版信息

J Neurosci. 1998 Sep 15;18(18):7511-8. doi: 10.1523/JNEUROSCI.18-18-07511.1998.

Abstract

During self-generated movement it is postulated that an efference copy of the descending motor command, in conjunction with an internal model of both the motor system and environment, enables us to predict the consequences of our own actions (von Helmholtz, 1867; Sperry, 1950; von Holst, 1954; Wolpert, 1997). Such a prediction is evident in the precise anticipatory modulation of grip force seen when one hand pushes on an object gripped in the other hand (Johansson and Westling, 1984; Flanagan and Wing, 1933). Here we show that self-generation is not in itself sufficient for such a prediction. We used two robots to simulate virtual objects held in one hand and acted on by the other. Precise predictive grip force modulation of the restraining hand was highly dependent on the sensory feedback to the hand producing the load. The results show that predictive modulation requires not only that the movement is self-generated, but also that the efference copy and sensory feedback are consistent with a specific context; in this case, the manipulation of a single object. We propose a novel computational mechanism whereby the CNS uses multiple internal models, each corresponding to a different sensorimotor context, to estimate the probability that the motor system is acting within each context.

摘要

在自我产生的运动过程中,据推测,下行运动指令的传出副本,结合运动系统和环境的内部模型,使我们能够预测自己行为的后果(冯·亥姆霍兹,1867年;斯佩里,1950年;冯·霍尔斯特,1954年;沃尔珀特,1997年)。当一只手推另一只手握住的物体时,在握力的精确预期调制中可以明显看到这种预测(约翰松和韦斯特林,1984年;弗拉纳根和温,1933年)。在这里,我们表明自我产生本身不足以进行这种预测。我们使用两个机器人来模拟一只手握住并由另一只手操作的虚拟物体。约束手的精确预测握力调制高度依赖于对产生负载的手的感觉反馈。结果表明,预测调制不仅需要运动是自我产生的,还需要传出副本和感觉反馈与特定情境一致;在这种情况下,是对单个物体的操作。我们提出了一种新的计算机制,中枢神经系统利用多个内部模型,每个模型对应不同的感觉运动情境,来估计运动系统在每个情境中行动的概率。

相似文献

2
Predictive motor learning of temporal delays.时间延迟的预测性运动学习
J Neurophysiol. 1999 Nov;82(5):2039-48. doi: 10.1152/jn.1999.82.5.2039.
4
Learning and decay of prediction in object manipulation.物体操纵中预测的学习与衰退
J Neurophysiol. 2000 Jul;84(1):334-43. doi: 10.1152/jn.2000.84.1.334.
6
Grip force anticipation of nonlinear, underactuated load force.非线性欠驱动负载力的握力力预测。
J Neurophysiol. 2021 May 1;125(5):1647-1662. doi: 10.1152/jn.00616.2020. Epub 2021 Mar 31.

引用本文的文献

5
Desegregation of neuronal predictive processing.神经元预测处理的去隔离
bioRxiv. 2024 Aug 7:2024.08.05.606684. doi: 10.1101/2024.08.05.606684.
9
Movement predictability modulates sensorimotor processing.运动可预测性调节感觉运动处理。
Front Hum Neurosci. 2023 Nov 20;17:1237407. doi: 10.3389/fnhum.2023.1237407. eCollection 2023.

本文引用的文献

1
Computational approaches to motor control.计算方法在运动控制中的应用。
Trends Cogn Sci. 1997 Sep;1(6):209-16. doi: 10.1016/S1364-6613(97)01070-X.
3
Forward Models for Physiological Motor Control.生理运动控制的前向模型
Neural Netw. 1996 Nov;9(8):1265-1279. doi: 10.1016/s0893-6080(96)00035-4.
9
An internal model for sensorimotor integration.一种用于感觉运动整合的内部模型。
Science. 1995 Sep 29;269(5232):1880-2. doi: 10.1126/science.7569931.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验