Suppr超能文献

新型隐球菌的荚膜通过减少吞噬作用来降低T淋巴细胞增殖,而抗荚膜抗体可恢复这种作用。

The capsule of Cryptococcus neoformans reduces T-lymphocyte proliferation by reducing phagocytosis, which can be restored with anticapsular antibody.

作者信息

Syme R M, Bruno T F, Kozel T R, Mody C H

机构信息

Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1.

出版信息

Infect Immun. 1999 Sep;67(9):4620-7. doi: 10.1128/IAI.67.9.4620-4627.1999.

Abstract

Cell-mediated immunity is critical for the host defense to Cryptococcus neoformans, as demonstrated by numerous animal studies and the prevalence of the infection in AIDS patients. Previous studies have established that the polysaccharide capsule contributes to the virulence of C. neoformans by suppressing T-lymphocyte proliferation, which reflects the clonal expansion of T lymphocytes that is a hallmark of cell-mediated immunity. The present studies were performed to identify the major mechanism by which polysaccharide impairs lymphocyte proliferation, since capsular polysaccharide has the potential to affect the development of T-lymphocyte responses by stimulating production of interleukin-10 (IL-10), inhibiting phagocytosis, and inducing shedding of cell surface receptors. We demonstrate that polysaccharide inhibits lymphocyte proliferation predominantly by blocking uptake of C. neoformans, which is crucial for subsequent lymphocyte proliferation. In addition, we show that polysaccharide did not suppress lymphocyte proliferation via an IL-10-dependent mechanism, nor did it affect critical surface receptor interactions on the T cell or antigen-presenting cell. Having established that polysaccharide impairs phagocytosis, we performed studies to determine whether opsonization with human serum or with anticapsular antibody could reverse this effect. Impaired uptake and lymphocyte proliferation that were induced by polysaccharide can be enhanced through opsonization with monoclonal antibodies or human serum, suggesting that antipolysaccharide antibodies might enhance the host defense by restoring uptake of the organism and subsequent presentation to T lymphocytes. These studies support the therapeutic potential of stimulating cell-mediated immunity to C. neoformans with anticapsular antibody.

摘要

细胞介导的免疫对于宿主抵御新型隐球菌至关重要,众多动物研究以及艾滋病患者中该感染的流行情况都证明了这一点。先前的研究已证实,多糖荚膜通过抑制T淋巴细胞增殖来促进新型隐球菌的毒力,这反映了T淋巴细胞的克隆性扩增,而克隆性扩增是细胞介导免疫的一个标志。由于荚膜多糖有可能通过刺激白细胞介素-10(IL-10)的产生、抑制吞噬作用以及诱导细胞表面受体脱落来影响T淋巴细胞反应的发展,因此开展了本研究以确定多糖损害淋巴细胞增殖的主要机制。我们证明,多糖主要通过阻断新型隐球菌的摄取来抑制淋巴细胞增殖,而新型隐球菌的摄取对于随后的淋巴细胞增殖至关重要。此外,我们表明多糖并非通过依赖IL-10的机制抑制淋巴细胞增殖,它也不影响T细胞或抗原呈递细胞上关键的表面受体相互作用。在确定多糖损害吞噬作用后,我们进行了研究以确定用人血清或抗荚膜抗体进行调理是否可以逆转这种效应。通过用单克隆抗体或人血清进行调理,可以增强多糖诱导的摄取受损和淋巴细胞增殖,这表明抗多糖抗体可能通过恢复该生物体的摄取并随后将其呈递给T淋巴细胞来增强宿主防御。这些研究支持了用抗荚膜抗体刺激针对新型隐球菌的细胞介导免疫的治疗潜力。

相似文献

4
Encapsulation of Cryptococcus neoformans impairs antigen-specific T-cell responses.
Infect Immun. 1991 Nov;59(11):3883-8. doi: 10.1128/iai.59.11.3883-3888.1991.
5
Antibody to Cryptococcus neoformans glucuronoxylomannan inhibits the release of capsular antigen.
Infect Immun. 2004 Jun;72(6):3674-9. doi: 10.1128/IAI.72.6.3674-3679.2004.
9
Fungal capsular polysaccharide and T-cell suppression: the hidden nature of poor immunogenicity.
Crit Rev Immunol. 2007;27(6):547-57. doi: 10.1615/critrevimmunol.v27.i6.50.
10
Capsular polysaccharides of Cryptococcus neoformans.
Rev Infect Dis. 1984 Sep-Oct;6(5):619-24. doi: 10.1093/clinids/6.5.619.

引用本文的文献

1
Cryptococcosis Associated With Biologic Therapy: A Narrative Review.
Open Forum Infect Dis. 2024 Jun 26;11(7):ofae316. doi: 10.1093/ofid/ofae316. eCollection 2024 Jul.
2
Biogenesis, germination, and pathogenesis of spores.
Microbiol Mol Biol Rev. 2024 Mar 27;88(1):e0019623. doi: 10.1128/mmbr.00196-23. Epub 2024 Mar 5.
3
Proteasome inhibition as a therapeutic target for the fungal pathogen .
Microbiol Spectr. 2023 Sep 26;11(5):e0190423. doi: 10.1128/spectrum.01904-23.
4
Influence of Pathogen Carbon Metabolism on Interactions With Host Immunity.
Front Cell Infect Microbiol. 2022 Mar 17;12:861405. doi: 10.3389/fcimb.2022.861405. eCollection 2022.
5
Functional heterogeneity of alveolar macrophage population based on expression of CXCL2.
Sci Immunol. 2020 Aug 7;5(50). doi: 10.1126/sciimmunol.aba7350.
6
A Mimic of Hepatic Encephalopathy: Two Cases of Cryptococcal Meningitis in North America.
J Clin Transl Hepatol. 2019 Jun 28;7(2):191-193. doi: 10.14218/JCTH.2019.00005. Epub 2019 May 4.
7
Infectious particle identity determines dissemination and disease outcome for the inhaled human fungal pathogen Cryptococcus.
PLoS Pathog. 2019 Jun 27;15(6):e1007777. doi: 10.1371/journal.ppat.1007777. eCollection 2019 Jun.
8
How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts.
J Mol Biol. 2019 Jul 26;431(16):2982-3009. doi: 10.1016/j.jmb.2019.05.003. Epub 2019 May 9.
9
Dragotcytosis: Elucidation of the Mechanism for Macrophage-to-Macrophage Transfer.
J Immunol. 2019 May 1;202(9):2661-2670. doi: 10.4049/jimmunol.1801118. Epub 2019 Mar 15.
10
Resistance and Tolerance to Cryptococcal Infection: An Intricate Balance That Controls the Development of Disease.
Front Immunol. 2019 Jan 29;10:66. doi: 10.3389/fimmu.2019.00066. eCollection 2019.

本文引用的文献

4
Regulatory role of exogenous IL-10 in the development of immune response versus Cryptococcus neoformans.
Clin Exp Immunol. 1997 Aug;109(2):242-7. doi: 10.1046/j.1365-2249.1997.4021303.x.
5
T cells cooperate with passive antibody to modify Cryptococcus neoformans infection in mice.
Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2483-8. doi: 10.1073/pnas.94.6.2483.
9
Opsonization of Cryptococcus neoformans by human anticryptococcal glucuronoxylomannan antibodies.
Infect Immun. 1996 Sep;64(9):3446-50. doi: 10.1128/iai.64.9.3446-3450.1996.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验