Bicout D J, Zaccai G
INFM-Operative Group Grenoble CRG IN13, 38042 Grenoble Cedex 9, France.
Biophys J. 2001 Mar;80(3):1115-23. doi: 10.1016/S0006-3495(01)76089-4.
A standard analysis of the scattered neutron incoherent elastic intensity measured with very good energy resolution yields elastic scans, i.e., mean-square displacements of atomic motions (in a pico to nanosecond time scale) in a sample as a function of temperature. This provides a quick way for characterizing the dynamical behavior of biological macromolecules, such behavior being correlated with biological function and activity. Elastic scans of proteins exhibit a dynamical transition at approximately 200 K, marking a cross-over in molecular fluctuations between harmonic and nonharmonic dynamical regimes. This paper presents an approach allowing analysis of the elastic scan in terms of force constants and related parameters, such as the free energy barrier DeltaG at the transition. We find that the increased protein flexibility beyond the dynamical transition is associated with DeltaG approximately equals RT and effective force constants of the order of 0.1-3 N/m. The analysis provides a set of parameters for characterizing molecular resilience and exploring relations among dynamics, function, and activity in proteins.
对以非常好的能量分辨率测量的散射中子非相干弹性强度进行的标准分析会产生弹性扫描,即样品中原子运动的均方位移(在皮秒到纳秒时间尺度内)作为温度的函数。这为表征生物大分子的动力学行为提供了一种快速方法,这种行为与生物功能和活性相关。蛋白质的弹性扫描在大约200K处表现出动力学转变,标志着谐波和非谐波动力学 regime之间分子波动的交叉。本文提出了一种方法,允许根据力常数和相关参数(如转变处的自由能垒DeltaG)对弹性扫描进行分析。我们发现,超过动力学转变的蛋白质柔韧性增加与DeltaG约等于RT以及有效力常数约为0.1 - 3 N/m有关。该分析提供了一组用于表征分子弹性以及探索蛋白质动力学、功能和活性之间关系的参数。