Suppr超能文献

敏感性分析、蒙特卡洛风险分析和贝叶斯不确定性评估。

Sensitivity analysis, Monte Carlo risk analysis, and Bayesian uncertainty assessment.

作者信息

Greenland S

机构信息

Department of Epidemiology, UCLA School of Public Health, UCLA College of Letters and Science, Los Angeles, CA 90095-1772, USA.

出版信息

Risk Anal. 2001 Aug;21(4):579-83. doi: 10.1111/0272-4332.214136.

Abstract

Standard statistical methods understate the uncertainty one should attach to effect estimates obtained from observational data. Among the methods used to address this problem are sensitivity analysis, Monte Carlo risk analysis (MCRA), and Bayesian uncertainty assessment. Estimates from MCRAs have been presented as if they were valid frequentist or Bayesian results, but examples show that they need not be either in actual applications. It is concluded that both sensitivity analyses and MCRA should begin with the same type of prior specification effort as Bayesian analysis.

摘要

标准统计方法低估了人们应赋予从观察性数据获得的效应估计值的不确定性。用于解决此问题的方法包括敏感性分析、蒙特卡洛风险分析(MCRA)和贝叶斯不确定性评估。MCRA的估计值呈现出来的样子就好像它们是有效的频率主义或贝叶斯结果,但实例表明,在实际应用中它们未必如此。得出的结论是,敏感性分析和MCRA都应像贝叶斯分析那样从相同类型的先验规范工作开始。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验