Suppr超能文献

一种基于模型的视网膜血管检测方法。

A model based method for retinal blood vessel detection.

作者信息

Vermeer K A, Vos F M, Lemij H G, Vossepoel A M

机构信息

Pattern Recognition Group, Delft university of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.

出版信息

Comput Biol Med. 2004 Apr;34(3):209-19. doi: 10.1016/S0010-4825(03)00055-6.

Abstract

Retinal blood vessels are important structures in ophthalmological images. Many detection methods are available, but the results are not always satisfactory. In this paper, we present a novel model based method for blood vessel detection in retinal images. It is based on a Laplace and thresholding segmentation step, followed by a classification step to improve performance. The last step assures incorporation of the inner part of large vessels with specular reflection. The method gives a sensitivity of 92% with a specificity of 91%. The method can be optimized for the specific properties of the blood vessels in the image and it allows for detection of vessels that appear to be split due to specular reflection.

摘要

视网膜血管是眼科图像中的重要结构。有许多检测方法可用,但结果并不总是令人满意。在本文中,我们提出了一种基于模型的新颖方法用于视网膜图像中的血管检测。它基于拉普拉斯和阈值分割步骤,随后是一个分类步骤以提高性能。最后一步确保纳入具有镜面反射的大血管内部。该方法的灵敏度为92%,特异性为91%。该方法可以针对图像中血管的特定属性进行优化,并且能够检测因镜面反射而看似分裂的血管。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验