Lu J X, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B
Institut de Recherche sur les Maladies du Squelette, Ru de Docteur Calot, 62608 Berck-Sur-Mer Cedex, France.
J Mater Sci Mater Med. 1999 Feb;10(2):111-20. doi: 10.1023/a:1008973120918.
The interconnections in a porous biomaterial are the pathways between the pores. They conduct cells and vessels between pores. Thus they favour bone ingrowth inside ceramics. The aim of our study was to determine the effect on bone ingrowth of interconnections in two ceramics: hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP) with the same porosity of about 50% and a mean pores size of 100-300 microm and a mean interconnection size of 30-100 microm. In vitro, four discs for osteoblast culture were studied after 14 and 28 days of incubation. The results show that human osteoblasts can penetrate interconnections over 20 microm in size, and colonize and proliferate inside macropores, but the most favourable size is over 40 microm. In vivo, eight cylinders were implanted in the middle shaft of both rabbit femurs for 12 or 24 weeks. The histomorphometric results show that interconnections in porous ceramics favour bone ingrowth inside the macropores. In the HA group the rate of calcification and bone ingrowth do not differ, and chondroid tissue is observed inside pores. But in beta-TCP, the calcification rate and the bone ingrowth increased significantly. At week 12 significant correlation between new bone ingrowth and the size of the interconnections is observed between new bone ingrowth and the density of pores. In conclusion we notice that in vivo a 20 microm interconnection size only allows cell penetration and chondroid tissue formation; however the size of the interconnections must be over 50 microm to favour new bone ingrowth inside the pores. We propose the concept of "interconnection density" which expresses the quantity of links between pores of porous materials. It assures cell proliferation and differentiation with blood circulation and extracellular liquid exchange. In resorbable materials, pore density and interconnection density are more important than their size, contrary to unresorbable materials in which the sizes and the densities are equally important.
多孔生物材料中的互连结构是孔隙之间的通道。它们引导细胞和血管在孔隙之间通行。因此,它们有利于陶瓷内部的骨长入。我们研究的目的是确定互连结构对两种陶瓷(羟基磷灰石(HA)和β-磷酸三钙(β-TCP))骨长入的影响,这两种陶瓷具有相同的约50%的孔隙率、100 - 300微米的平均孔径和30 - 100微米的平均互连尺寸。在体外,对用于成骨细胞培养的四个圆盘在培养14天和28天后进行了研究。结果表明,人类成骨细胞能够穿透尺寸超过20微米的互连结构,并在大孔内定植和增殖,但最适宜的尺寸是超过40微米。在体内,将八个圆柱体植入两只兔股骨的中轴12周或24周。组织形态计量学结果表明,多孔陶瓷中的互连结构有利于大孔内部的骨长入。在HA组中,钙化率和骨长入没有差异,并且在孔隙内观察到类软骨组织。但在β-TCP中,钙化率和骨长入显著增加。在第12周时,观察到新骨长入与互连结构尺寸以及新骨长入与孔隙密度之间存在显著相关性。总之,我们注意到在体内,20微米的互连尺寸仅允许细胞穿透和类软骨组织形成;然而,互连结构的尺寸必须超过50微米才能有利于孔隙内的新骨长入。我们提出了“互连密度”的概念,它表示多孔材料孔隙之间连接的数量。它确保细胞增殖和分化以及血液循环和细胞外液交换。在可吸收材料中,孔隙密度和互连密度比它们的尺寸更重要,这与不可吸收材料不同,在不可吸收材料中尺寸和密度同样重要。