Suppr超能文献

果子狸对两种不同的严重急性呼吸综合征冠状病毒分离株的实验性感染同样易感。

Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates.

作者信息

Wu Donglai, Tu Changchun, Xin Chaoan, Xuan Hua, Meng Qingwen, Liu Yonggang, Yu Yedong, Guan Yuntao, Jiang Yu, Yin Xunnan, Crameri Gary, Wang Muping, Li Changwen, Liu Shengwang, Liao Ming, Feng Li, Xiang Hua, Sun Jinfu, Chen Jinding, Sun Yanwei, Gu Shoulin, Liu Nihong, Fu Dexia, Eaton Bryan T, Wang Lin-Fa, Kong Xiangang

机构信息

National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin 150001, China.

出版信息

J Virol. 2005 Feb;79(4):2620-5. doi: 10.1128/JVI.79.4.2620-2625.2005.

Abstract

Severe acute respiratory syndrome (SARS) was caused by a novel virus now known as SARS coronavirus (SARS-CoV). The discovery of SARS-CoV-like viruses in masked palm civets (Paguma larvata) raises the possibility that civets play a role in SARS-CoV transmission. To test the susceptibility of civets to experimental infection by different SARS-CoV isolates, 10 civets were inoculated with two human isolates of SARS-CoV, BJ01 (with a 29-nucleotide deletion) and GZ01 (without the 29-nucleotide deletion). All inoculated animals displayed clinical symptoms, such as fever, lethargy, and loss of aggressiveness, and the infection was confirmed by virus isolation, detection of viral genomic RNA, and serum-neutralizing antibodies. Our data show that civets were equally susceptible to SARS-CoV isolates GZ01 and BJ01.

摘要

严重急性呼吸综合征(SARS)由一种新型病毒引起,该病毒现被称为SARS冠状病毒(SARS-CoV)。在果子狸(Paguma larvata)中发现SARS-CoV样病毒增加了果子狸在SARS-CoV传播中起作用的可能性。为了测试果子狸对不同SARS-CoV分离株实验性感染的易感性,用两株人类SARS-CoV分离株BJ01(有29个核苷酸缺失)和GZ01(无29个核苷酸缺失)接种了10只果子狸。所有接种动物均出现发热、嗜睡和攻击性丧失等临床症状,并且通过病毒分离、病毒基因组RNA检测和血清中和抗体证实了感染。我们的数据表明,果子狸对SARS-CoV分离株GZ01和BJ01同样易感。

相似文献

2
A review of studies on animal reservoirs of the SARS coronavirus.
Virus Res. 2008 Apr;133(1):74-87. doi: 10.1016/j.virusres.2007.03.012. Epub 2007 Apr 23.
3
Pathological changes in masked palm civets experimentally infected by severe acute respiratory syndrome (SARS) coronavirus.
J Comp Pathol. 2008 May;138(4):171-9. doi: 10.1016/j.jcpa.2007.12.005. Epub 2008 Mar 17.
4
Bats, civets and the emergence of SARS.
Curr Top Microbiol Immunol. 2007;315:325-44. doi: 10.1007/978-3-540-70962-6_13.
6
SARS-CoV infection in a restaurant from palm civet.
Emerg Infect Dis. 2005 Dec;11(12):1860-5. doi: 10.3201/eid1112.041293.
9
Molecular epidemiology, evolution and phylogeny of SARS coronavirus.
Infect Genet Evol. 2019 Jul;71:21-30. doi: 10.1016/j.meegid.2019.03.001. Epub 2019 Mar 4.
10
Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies.
Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12123-8. doi: 10.1073/pnas.0701000104. Epub 2007 Jul 9.

引用本文的文献

1
Detection of avian, murine, bovine, shrew, and bat coronaviruses in wild mammals from Mexico.
Virol J. 2025 Apr 26;22(1):122. doi: 10.1186/s12985-025-02724-8.
2
Animal Models for Human-Pathogenic Coronavirus and Animal Coronavirus Research.
Viruses. 2025 Jan 14;17(1):100. doi: 10.3390/v17010100.
3
Therapeutic nanobodies against SARS-CoV-2 and other pathogenic human coronaviruses.
J Nanobiotechnology. 2024 May 31;22(1):304. doi: 10.1186/s12951-024-02573-7.
4
SARS-CoV-2 and Zoonotic Preparedness: Unknown Knowns?
Infect Microbes Dis. 2021 Jan 21;3(1):30-31. doi: 10.1097/IM9.0000000000000051. eCollection 2021 Mar.
5
One health system supporting surveillance during COVID-19 epidemic in Abruzzo region, southern Italy.
One Health. 2023 Jun;16:100471. doi: 10.1016/j.onehlt.2022.100471. Epub 2022 Dec 7.
6
Cross-species recognition and molecular basis of SARS-CoV-2 and SARS-CoV binding to ACE2s of marine animals.
Natl Sci Rev. 2022 Jun 23;9(9):nwac122. doi: 10.1093/nsr/nwac122. eCollection 2022 Sep.
7
Exceptional diversity and selection pressure on coronavirus host receptors in bats compared to other mammals.
Proc Biol Sci. 2022 Jul 27;289(1979):20220193. doi: 10.1098/rspb.2022.0193.
9
Virome characterization of game animals in China reveals a spectrum of emerging pathogens.
Cell. 2022 Mar 31;185(7):1117-1129.e8. doi: 10.1016/j.cell.2022.02.014. Epub 2022 Feb 16.
10
SARS-CoV-2 at the human-animal interphase: A review.
Heliyon. 2021 Dec;7(12):e08496. doi: 10.1016/j.heliyon.2021.e08496. Epub 2021 Nov 27.

本文引用的文献

1
Mice susceptible to SARS coronavirus.
Emerg Infect Dis. 2004 Jul;10(7):1293-6. doi: 10.3201/eid1007.031119.
2
Epidemiologic clues to SARS origin in China.
Emerg Infect Dis. 2004 Jun;10(6):1030-7. doi: 10.3201/eid1006.030852.
3
Susceptibility of pigs and chickens to SARS coronavirus.
Emerg Infect Dis. 2004 Feb;10(2):179-84. doi: 10.3201/eid1002.030677.
5
Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China.
Science. 2004 Mar 12;303(5664):1666-9. doi: 10.1126/science.1092002. Epub 2004 Jan 29.
6
Virology: SARS virus infection of cats and ferrets.
Nature. 2003 Oct 30;425(6961):915. doi: 10.1038/425915a.
9
Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China.
Science. 2003 Oct 10;302(5643):276-8. doi: 10.1126/science.1087139. Epub 2003 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验