Lash Timothy L, Mor Vincent, Wieland Darryl, Ferrucci Luigi, Satariano William, Silliman Rebecca A
Geriatrics Section, Boston University School of Medicine, Boston, MA 02118, USA.
J Gerontol A Biol Sci Med Sci. 2007 Mar;62(3):281-5. doi: 10.1093/gerona/62.3.281.
Measurement of comorbidity affects all variable axes that are considered in health care research: confounding, modifying, independent, and dependent variable. Comorbidity measurement particularly affects research involving older adults because they bear the disproportionate share of the comorbidity burden.
We examine how well researchers can expect to segregate study participants into those who are healthier and those who are less healthy, given the variable axis for which they are measuring comorbidity, the comorbidity measure they select, and the analytic method they choose. We also examine the impact of poor measurement of comorbidity.
Available comorbidity measures make use of medical records, self-report, physician assessments, and administrative databases. Analyses using these scales introduce uncertainties that can be framed as measurement error or misclassification problems, and can be addressed by extant analytic methods. Newer analytic methods make efficient use of multiple sources of comorbidity information.
Consideration of the comorbidity measure, its role in the analysis, and analogous measurement error problems will yield an analytic solution and an appreciation for the likely direction and magnitude of the biases introduced.
共病的测量会影响医疗保健研究中所考虑的所有变量轴:混杂变量、修正变量、独立变量和因变量。共病测量对涉及老年人的研究影响尤为显著,因为他们承担了不成比例的共病负担。
我们研究了在给定测量共病的变量轴、所选择的共病测量方法以及所选用的分析方法的情况下,研究人员能够在多大程度上期望将研究参与者区分为健康状况较好和较差的人群。我们还研究了共病测量不佳的影响。
现有的共病测量方法利用了医疗记录、自我报告、医生评估和行政数据库。使用这些量表进行的分析会引入不确定性,这些不确定性可被视为测量误差或错误分类问题,并且可以通过现有的分析方法来解决。更新的分析方法有效地利用了共病信息的多个来源。
考虑共病测量方法、其在分析中的作用以及类似的测量误差问题,将得出一个分析解决方案,并有助于了解所引入偏差的可能方向和程度。