Xue Bai, Choi Stacey S, Doble Nathan, Werner John S
Department of Ophthalmology and Vision Science, University of California Davis, Sacramento 95817, USA.
J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1364-72. doi: 10.1364/josaa.24.001364.
A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a montaging algorithm that joins retinal images with overlapping common features without edge effects and (2) a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of known density, with low contrast) and for AO images from normal eyes when compared with previously reported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore, useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt's macular dystrophy and retinitis pigmentosa.
描述了一种快速有效的方法,用于量化通过正面泛光照明自适应光学(AO)成像系统获得的图像中的光感受器密度。为提高视锥细胞计数的准确性,对正面图像在更大区域进行分析。这通过两种独立的半自动算法实现:(1)一种拼接算法,该算法将具有重叠共同特征的视网膜图像拼接在一起而无边缘效应;(2)一种视锥细胞密度测量算法,该算法对拼接图像中的单个视锥细胞进行计数。视锥细胞密度测量算法的准确性很高,与先前报道的组织学数据相比,对于模拟视网膜图像(已知密度,对比度低)和正常眼睛的AO图像,一致性>97%。我们的算法不需要视锥细胞排列的空间规律性,因此可用于对患病视网膜中的视锥细胞进行计数,如对患有Stargardt黄斑营养不良和视网膜色素变性的眼睛所证明的那样。