Sunderam Sridhar, Chernyy Nick, Peixoto Nathalia, Mason Jonathan P, Weinstein Steven L, Schiff Steven J, Gluckman Bruce J
Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
J Neurosci Methods. 2007 Jul 30;163(2):373-83. doi: 10.1016/j.jneumeth.2007.03.007. Epub 2007 Mar 15.
State of vigilance is determined by behavioral observations and electrophysiological activity. Here, we improve automatic state of vigilance discrimination by combining head acceleration with EEG measures. We incorporated biaxial dc-sensitive microelectromechanical system (MEMS) accelerometers into head-mounted preamplifiers in rodents. Epochs (15s) of behavioral video and EEG data formed training sets for the following states: Slow Wave Sleep, Rapid Eye Movement Sleep, Quiet Wakefulness, Feeding or Grooming, and Exploration. Multivariate linear discriminant analysis of EEG features with and without accelerometer features was used to classify behavioral state. A broad selection of EEG feature sets based on recent literature on state discrimination in rodents was tested. In all cases, inclusion of head acceleration significantly improved the discriminative capability. Our approach offers a novel methodology for determining the behavioral context of EEG in real time, and has potential application in automatic sleep-wake staging and in neural prosthetic applications for movement disorders and epileptic seizures.
警觉状态由行为观察和电生理活动来确定。在此,我们通过将头部加速度与脑电图测量相结合来改进自动警觉状态判别。我们将双轴直流敏感微机电系统(MEMS)加速度计集成到啮齿动物头戴式前置放大器中。行为视频和脑电图数据的时段(15秒)形成了针对以下状态的训练集:慢波睡眠、快速眼动睡眠、安静觉醒、进食或梳理毛发以及探索。使用包含和不包含加速度计特征的脑电图特征进行多变量线性判别分析来对行为状态进行分类。基于近期关于啮齿动物状态判别的文献测试了多种脑电图特征集。在所有情况下,纳入头部加速度都显著提高了判别能力。我们的方法提供了一种实时确定脑电图行为背景的新方法,并且在自动睡眠 - 觉醒分期以及运动障碍和癫痫发作的神经假体应用中具有潜在应用价值。