Halperin Inbal, Glazer Dariya S, Wu Shirley, Altman Russ B
Department of Genetics, 318 Campus Drive, Clark Center S240, Stanford, CA 94305, USA.
BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S2. doi: 10.1186/1471-2164-9-S2-S2.
Structural genomics efforts contribute new protein structures that often lack significant sequence and fold similarity to known proteins. Traditional sequence and structure-based methods may not be sufficient to annotate the molecular functions of these structures. Techniques that combine structural and functional modeling can be valuable for functional annotation. FEATURE is a flexible framework for modeling and recognition of functional sites in macromolecular structures. Here, we present an overview of the main components of the FEATURE framework, and describe the recent developments in its use. These include automating training sets selection to increase functional coverage, coupling FEATURE to structural diversity generating methods such as molecular dynamics simulations and loop modeling methods to improve performance, and using FEATURE in large-scale modeling and structure determination efforts.
结构基因组学研究产生了新的蛋白质结构,这些结构通常与已知蛋白质缺乏显著的序列和折叠相似性。传统的基于序列和结构的方法可能不足以注释这些结构的分子功能。结合结构和功能建模的技术对于功能注释可能很有价值。FEATURE是一个用于在大分子结构中建模和识别功能位点的灵活框架。在这里,我们概述了FEATURE框架的主要组件,并描述了其应用的最新进展。这些进展包括自动选择训练集以增加功能覆盖范围,将FEATURE与分子动力学模拟和环建模方法等结构多样性生成方法相结合以提高性能,以及在大规模建模和结构确定工作中使用FEATURE。