Suppr超能文献

中国北方济南的天气与细菌性痢疾传播:一项时间序列分析

Weather and the transmission of bacillary dysentery in Jinan, northern China: a time-series analysis.

作者信息

Zhang Ying, Bi Peng, Hiller Janet E

机构信息

Discipline of Public Health, University of Adelaide, Adelaide, South Australia.

出版信息

Public Health Rep. 2008 Jan-Feb;123(1):61-6. doi: 10.1177/003335490812300109.

Abstract

OBJECTIVES

This article aims to quantify the relationship between weather variations and bacillary dysentery in Jinan, a city in northern China with a temperate climate, to reach a better understanding of the effect of weather variations on enteric infections.

METHODS

The weather variables and number of cases of bacillary dysentery during the period 1987-2000 has been studied on a monthly basis. The Spearman correlation between each weather variable and dysentery cases was conducted. Seasonal autoregressive integrated moving average (SARIMA) models were used to perform the regression analyses.

RESULTS

Maximum temperature (one-month lag), minimum temperature (one-month lag), rainfall (one-month lag), relative humidity (without lag), and air pressure (one-month lag) were all significantly correlated with the number of dysentery cases in Jinan. After controlling for the seasonality, lag time, and long-term trend, the SARIMA model suggested that a 1 degree C rise in maximum temperature might relate to more than 10% (95% confidence interval 10.19, 12.69) increase in the cases of bacillary dysentery in this city.

CONCLUSIONS

Weather variations have already affected the transmission of bacillary dysentery in China. Temperatures could be used as a predictor of the number of dysentery cases in a temperate city in northern China. Public health interventions should be undertaken at this stage to adapt and mitigate the possible consequences of climate change in the future.

摘要

目的

本文旨在量化中国北方温带气候城市济南天气变化与细菌性痢疾之间的关系,以便更好地了解天气变化对肠道感染的影响。

方法

对1987 - 2000年期间的天气变量和细菌性痢疾病例数进行了月度研究。对每个天气变量与痢疾病例之间进行了Spearman相关性分析。使用季节性自回归积分滑动平均(SARIMA)模型进行回归分析。

结果

最高温度(滞后1个月)、最低温度(滞后1个月)、降雨量(滞后1个月)、相对湿度(无滞后)和气压(滞后1个月)均与济南的痢疾病例数显著相关。在控制了季节性、滞后时间和长期趋势后,SARIMA模型表明最高温度每升高1摄氏度,该市细菌性痢疾病例可能增加超过10%(95%置信区间10.19,12.69)。

结论

天气变化已经影响了中国细菌性痢疾的传播。温度可作为中国北方温带城市痢疾病例数的预测指标。现阶段应采取公共卫生干预措施,以适应和减轻未来气候变化可能带来的后果。

相似文献

引用本文的文献

1
Climate change and its impact on infectious diseases in Asia.亚洲的气候变化及其对传染病的影响。
Singapore Med J. 2024 Apr 1;65(4):211-219. doi: 10.4103/singaporemedj.SMJ-2023-180. Epub 2024 Apr 23.

本文引用的文献

6
Shigellosis.志贺氏菌病
J Microbiol. 2005 Apr;43(2):133-43.
9
Does ambient temperature affect foodborne disease?环境温度会影响食源性疾病吗?
Epidemiology. 2004 Jan;15(1):86-92. doi: 10.1097/01.ede.0000101021.03453.3e.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验