Stout Natasha K, Goldie Sue J
Program in Health Decision Science, Harvard School of Public Health, 718 Huntington Ave., Boston, MA 02115, USA.
Health Care Manag Sci. 2008 Dec;11(4):399-406. doi: 10.1007/s10729-008-9067-6.
Disease simulation models are used to conduct decision analyses of the comparative benefits and risks associated with preventive and treatment strategies. To address increasing model complexity and computational intensity, modelers use variance reduction techniques to reduce stochastic noise and improve computational efficiency. One technique, common random numbers, further allows modelers to conduct counterfactual-like analyses with direct computation of statistics at the individual level. This technique uses synchronized random numbers across model runs to induce correlation in model output thereby making differences easier to distinguish as well as simulating identical individuals across model runs. We provide a tutorial introduction and demonstrate the application of common random numbers in an individual-level simulation model of the epidemiology of breast cancer.
疾病模拟模型用于对与预防和治疗策略相关的比较益处和风险进行决策分析。为了应对模型复杂性和计算强度不断增加的问题,建模者使用方差缩减技术来减少随机噪声并提高计算效率。其中一种技术,即共同随机数,进一步使建模者能够通过在个体层面直接计算统计量来进行类似反事实的分析。该技术在模型运行中使用同步随机数来诱导模型输出中的相关性,从而使差异更易于区分,并在不同模型运行中模拟相同的个体。我们提供了一个教程介绍,并展示了共同随机数在乳腺癌流行病学个体层面模拟模型中的应用。