Suppr超能文献

工业化食用动物生产中的人畜界面与传染病:重新思考生物安全与生物遏制

The animal-human interface and infectious disease in industrial food animal production: rethinking biosecurity and biocontainment.

作者信息

Graham Jay P, Leibler Jessica H, Price Lance B, Otte Joachim M, Pfeiffer Dirk U, Tiensin T, Silbergeld Ellen K

机构信息

Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Division of Environmental Health Engineering, Baltimore, MD 21205, USA.

出版信息

Public Health Rep. 2008 May-Jun;123(3):282-99. doi: 10.1177/003335490812300309.

Abstract

Understanding interactions between animals and humans is critical in preventing outbreaks of zoonotic disease. This is particularly important for avian influenza. Food animal production has been transformed since the 1918 influenza pandemic. Poultry and swine production have changed from small-scale methods to industrial-scale operations. There is substantial evidence of pathogen movement between and among these industrial facilities, release to the external environment, and exposure to farm workers, which challenges the assumption that modern poultry production is more biosecure and biocontained as compared with backyard or small holder operations in preventing introduction and release of pathogens. An analysis of data from the Thai government investigation in 2004 indicates that the odds of H5N1 outbreaks and infections were significantly higher in large-scale commercial poultry operations as compared with backyard flocks. These data suggest that successful strategies to prevent or mitigate the emergence of pandemic avian influenza must consider risk factors specific to modern industrialized food animal production.

摘要

了解动物与人类之间的相互作用对于预防人畜共患病的爆发至关重要。这对于禽流感尤为重要。自1918年流感大流行以来,食用动物生产发生了转变。家禽和生猪生产已从小规模方式转变为工业化规模经营。有大量证据表明病原体在这些工业设施之间移动、释放到外部环境并暴露于农场工人,这对现代家禽生产在防止病原体引入和释放方面比后院或小规模养殖更具生物安全性和生物封闭性这一假设提出了挑战。对泰国政府2004年调查数据的分析表明,与后院鸡群相比,大规模商业家禽养殖场发生H5N1疫情和感染的几率显著更高。这些数据表明,预防或减轻大流行性禽流感出现的成功策略必须考虑现代工业化食用动物生产特有的风险因素。

相似文献

2
Protecting poultry workers from exposure to avian influenza viruses.
Public Health Rep. 2008 May-Jun;123(3):316-22. doi: 10.1177/003335490812300311.
3
Industrial food animal production and global health risks: exploring the ecosystems and economics of avian influenza.
Ecohealth. 2009 Mar;6(1):58-70. doi: 10.1007/s10393-009-0226-0. Epub 2009 May 13.
4
Exposure to avian influenza H7N9 in farms and wet markets.
Lancet. 2013 May 25;381(9880):1815. doi: 10.1016/S0140-6736(13)60949-6. Epub 2013 May 10.
6
Avian flu school: a training approach to prepare for H5N1 highly pathogenic avian influenza.
Public Health Rep. 2008 May-Jun;123(3):323-32. doi: 10.1177/003335490812300312.
7
Influx of Backyard Farming with Limited Biosecurity Due to the COVID-19 Pandemic Carries an Increased Risk of Zoonotic Spillover in Cambodia.
Microbiol Spectr. 2023 Feb 14;11(1):e0420722. doi: 10.1128/spectrum.04207-22. Epub 2022 Dec 14.
8
Antibody prevalence of low-pathogenicity avian influenza and evaluation of management practices in Minnesota backyard poultry flocks.
Zoonoses Public Health. 2012 Mar;59(2):139-43. doi: 10.1111/j.1863-2378.2011.01427.x. Epub 2011 Jul 6.
9
Highly pathogenic avian influenza H5N1, Thailand, 2004.
Emerg Infect Dis. 2005 Nov;11(11):1664-72. doi: 10.3201/eid1111.050608.
10
Pandemic influenza planning: shouldn't swine and poultry workers be included?
Vaccine. 2007 May 30;25(22):4376-81. doi: 10.1016/j.vaccine.2007.03.036. Epub 2007 Apr 4.

引用本文的文献

1
Human-wildlife conflict and its consequences in Tanzania: advocating the use of One Health approach as a mitigation measure.
Sci One Health. 2025 Apr 19;4:100109. doi: 10.1016/j.soh.2025.100109. eCollection 2025.
3
Variation in bacterial pathotype is consistent with the sit-and-wait hypothesis.
Microbiology (Reading). 2024 Sep;170(9). doi: 10.1099/mic.0.001500.
5
Antimicrobial use and antimicrobial resistance in in semi-intensive and free-range poultry farms in Uganda.
One Health. 2024 May 23;18:100762. doi: 10.1016/j.onehlt.2024.100762. eCollection 2024 Jun.
6
The effect of psychoactive bacteria, Bifidobacterium longum Rosell®-175 and Lactobacillus rhamnosus JB-1, on brain proteome profiles in mice.
Psychopharmacology (Berl). 2024 May;241(5):925-945. doi: 10.1007/s00213-023-06519-z. Epub 2023 Dec 29.
7
The impact of anthropogenic climate change on pediatric viral diseases.
Pediatr Res. 2024 Jan;95(2):496-507. doi: 10.1038/s41390-023-02929-z. Epub 2023 Dec 6.
8
Occupational Etiology of Oropharyngeal Cancer: A Literature Review.
Int J Environ Res Public Health. 2023 Nov 3;20(21):7020. doi: 10.3390/ijerph20217020.
9
Proposed solutions to anthropogenic climate change: A systematic literature review and a new way forward.
Heliyon. 2023 Oct 10;9(10):e20544. doi: 10.1016/j.heliyon.2023.e20544. eCollection 2023 Oct.
10
Avian encephalomyelitis virus in backyard chickens.
Vet World. 2023 Sep;16(9):1866-1870. doi: 10.14202/vetworld.2023.1866-1870. Epub 2023 Sep 17.

本文引用的文献

3
Neurologic symptoms and neuropathologic antibodies in poultry workers exposed to Campylobacter jejuni.
J Occup Environ Med. 2007 Jul;49(7):748-55. doi: 10.1097/JOM.0b013e3180d09ec5.
5
The origin and virulence of the 1918 "Spanish" influenza virus.
Proc Am Philos Soc. 2006 Mar;150(1):86-112.
7
Pandemic influenza planning: shouldn't swine and poultry workers be included?
Vaccine. 2007 May 30;25(22):4376-81. doi: 10.1016/j.vaccine.2007.03.036. Epub 2007 Apr 4.
8
Diffuse pollution from intensive agriculture: sustainability, challenges, and opportunities.
Water Sci Technol. 2007;55(3):17-23. doi: 10.2166/wst.2007.067.
9
Confined animal feeding operations as amplifiers of influenza.
Vector Borne Zoonotic Dis. 2006 Winter;6(4):338-46. doi: 10.1089/vbz.2006.6.338.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验