Suppr超能文献

用于光谱域光学相干显微镜的高速处理架构。

High-speed processing architecture for spectral-domain optical coherence microscopy.

作者信息

Chelliyil Robin G, Ralston Tyler S, Marks Daniel L, Boppart Stephen A

机构信息

University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Biophotonics Imaging Laboratory, Urbana, Illinois 61801, USA.

出版信息

J Biomed Opt. 2008 Jul-Aug;13(4):044013. doi: 10.1117/1.2960018.

Abstract

Optical coherence microscopy (OCM) is an interferometric technique that combines principles of confocal microscopy and optical coherence tomography (OCT) to obtain high-resolution en face images. Axial and lateral resolutions of several microns can be achieved using OCM depending on the numerical aperture (NA) of the objective and sample properties. We address the computational complexity that is inherent in spectral-domain OCM systems that limits its real-time capability as a microscope. An architecture that will improve the efficiency of the computation involved is presented. Currently, spectral-domain OCM images are obtained by individually taking the Fourier transform of each axial scan in cross-sectional frames and computationally slicing them to generate en face images. The real-time architecture presented here relies on the fact that only one Fourier domain point of a given axial scan needs to be computed rather than computing all the Fourier domain points, which can frequently require a significant amount of time to compute. This new realization has been shown to reduce the processing time to obtain the en face OCM images by a factor of 30.

摘要

光学相干显微镜(OCM)是一种干涉技术,它结合了共聚焦显微镜和光学相干断层扫描(OCT)的原理,以获取高分辨率的正面图像。根据物镜的数值孔径(NA)和样品特性,使用OCM可以实现几微米的轴向和横向分辨率。我们解决了光谱域OCM系统中固有的计算复杂性问题,这种复杂性限制了其作为显微镜的实时能力。本文提出了一种能提高相关计算效率的架构。目前,光谱域OCM图像是通过对横截面帧中的每个轴向扫描分别进行傅里叶变换,并通过计算切片来生成正面图像的。这里提出的实时架构基于这样一个事实,即对于给定的轴向扫描,只需要计算一个傅里叶域点,而不是计算所有的傅里叶域点,后者通常需要大量时间来计算。这种新方法已被证明能将获取正面OCM图像的处理时间缩短30倍。

相似文献

1
High-speed processing architecture for spectral-domain optical coherence microscopy.
J Biomed Opt. 2008 Jul-Aug;13(4):044013. doi: 10.1117/1.2960018.
3
Exploiting data redundancy in computational optical imaging.
Opt Express. 2015 Nov 30;23(24):30603-17. doi: 10.1364/OE.23.030603.
4
Ultrahigh speed spectral-domain optical coherence microscopy.
Biomed Opt Express. 2013 Jul 1;4(8):1236-54. doi: 10.1364/BOE.4.001236. eCollection 2013.
5
Spectroscopic spectral-domain optical coherence microscopy.
Opt Lett. 2006 Apr 15;31(8):1079-81. doi: 10.1364/ol.31.001079.
6
Applications of short-coherence digital holography in microscopy.
Appl Opt. 2005 Jul 1;44(19):3977-84. doi: 10.1364/ao.44.003977.
8
10
Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography.
Opt Express. 2013 Jul 29;21(15):17711-29. doi: 10.1364/OE.21.017711.

引用本文的文献

1
Photonic force optical coherence elastography for three-dimensional mechanical microscopy.
Nat Commun. 2018 May 25;9(1):2079. doi: 10.1038/s41467-018-04357-8.
2
Measurement of dynamic cell-induced 3D displacement fields for traction force optical coherence microscopy.
Biomed Opt Express. 2017 Jan 27;8(2):1152-1171. doi: 10.1364/BOE.8.001152. eCollection 2017 Feb 1.
3
Correction of coherence gate curvature in high numerical aperture optical coherence imaging.
Opt Lett. 2010 Sep 15;35(18):3120-2. doi: 10.1364/OL.35.003120.
4
Optical approach to the salivary pellicle.
J Biomed Opt. 2009 Jul-Aug;14(4):044001. doi: 10.1117/1.3158994.

本文引用的文献

1
Optical coherence microscopy in scattering media.
Opt Lett. 1994 Apr 15;19(8):590-2. doi: 10.1364/ol.19.000590.
2
Ultrahigh resolution Fourier domain optical coherence tomography.
Opt Express. 2004 May 17;12(10):2156-65. doi: 10.1364/opex.12.002156.
3
Collinear optical coherence and confocal fluorescence microscopies for tissue engineering.
Opt Express. 2003 Nov 17;11(23):3074-9. doi: 10.1364/oe.11.003074.
4
Performance of fourier domain vs. time domain optical coherence tomography.
Opt Express. 2003 Apr 21;11(8):889-94. doi: 10.1364/oe.11.000889.
5
Combined scanning optical coherence and two-photon-excited fluorescence microscopy.
Opt Lett. 1999 Jul 15;24(14):969-71. doi: 10.1364/ol.24.000969.
7
Extended focus depth for Fourier domain optical coherence microscopy.
Opt Lett. 2006 Aug 15;31(16):2450-2. doi: 10.1364/ol.31.002450.
8
Spectroscopic spectral-domain optical coherence microscopy.
Opt Lett. 2006 Apr 15;31(8):1079-81. doi: 10.1364/ol.31.001079.
9
Autofocus algorithm for dispersion correction in optical coherence tomography.
Appl Opt. 2003 Jun 1;42(16):3038-46. doi: 10.1364/ao.42.003038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验