Suppr超能文献

用于体内和原位成像的多光谱共聚焦微型内窥镜。

Multispectral confocal microendoscope for in vivo and in situ imaging.

作者信息

Makhlouf Houssine, Gmitro Arthur F, Tanbakuchi Anthony A, Udovich Josh A, Rouse Andrew R

机构信息

University of Arizona, Department of Radiology, P. O. Box 245067, Tucson, Arizona 85724-5067, USA.

出版信息

J Biomed Opt. 2008 Jul-Aug;13(4):044016. doi: 10.1117/1.2950313.

Abstract

We describe the design and operation of a multispectral confocal microendoscope. This fiber-based fluorescence imaging system consists of a slit-scan confocal microscope coupled to an imaging catheter that is designed to be minimally invasive and allow for cellular level imaging in vivo. The system can operate in two imaging modes. The grayscale mode of operation provides high resolution real-time in vivo images showing the intensity of fluorescent signal from the specimen. The multispectral mode of operation uses a prism as a dispersive element to collect a full multispectral image of the fluorescence emission. The instrument can switch back and forth nearly instantaneously between the two imaging modes (less than half a second). In the current configuration, the multispectral confocal microendoscope achieves 3-microm lateral resolution and 30-microm axial resolution. The system records light from 500 to 750 nm, and the minimum resolvable wavelength difference varies from 2.9 to 8.3 nm over this spectral range. Grayscale and multispectral imaging results from ex-vivo human tissues and small animal tissues are presented.

摘要

我们描述了一种多光谱共聚焦微型内窥镜的设计与操作。这种基于光纤的荧光成像系统由一个狭缝扫描共聚焦显微镜与一个成像导管相连组成,该成像导管设计为微创型,可在体内进行细胞水平成像。该系统可在两种成像模式下运行。灰度操作模式提供高分辨率的实时体内图像,显示来自样本的荧光信号强度。多光谱操作模式使用棱镜作为色散元件来收集荧光发射的完整多光谱图像。该仪器可在两种成像模式之间几乎瞬间切换(不到半秒)。在当前配置下,多光谱共聚焦微型内窥镜实现了3微米的横向分辨率和30微米的轴向分辨率。该系统记录500至750纳米的光,在此光谱范围内,最小可分辨波长差从2.9纳米到8.3纳米不等。文中展示了来自离体人体组织和小动物组织的灰度及多光谱成像结果。

相似文献

1
Multispectral confocal microendoscope for in vivo and in situ imaging.
J Biomed Opt. 2008 Jul-Aug;13(4):044016. doi: 10.1117/1.2950313.
2
Design and demonstration of a miniature catheter for a confocal microendoscope.
Appl Opt. 2004 Nov 1;43(31):5763-71. doi: 10.1364/ao.43.005763.
3
Five-lens, easy-to-implement miniature objective for a fluorescence confocal microendoscope.
Opt Express. 2016 Jan 11;24(1):473-84. doi: 10.1364/OE.24.000473.
4
Confocal fluorescence microendoscopy of bronchial epithelium.
J Biomed Opt. 2009 Mar-Apr;14(2):024008. doi: 10.1117/1.3103583.
6
Spectrally encoded slit confocal microscopy.
Opt Lett. 2006 Jun 1;31(11):1687-9. doi: 10.1364/ol.31.001687.
7
Hyperspectral confocal microscope.
Appl Opt. 2006 Aug 20;45(24):6283-91. doi: 10.1364/ao.45.006283.
8
Spectral- and frequency-encoded fluorescence imaging.
Opt Lett. 2005 Oct 15;30(20):2760-2. doi: 10.1364/ol.30.002760.
9
In vivo confocal and multiphoton microendoscopy.
J Biomed Opt. 2008 Jan-Feb;13(1):010501. doi: 10.1117/1.2839043.
10
Upconversion fiber-optic confocal microscopy under near-infrared pumping.
Opt Lett. 2008 Mar 1;33(5):425-7. doi: 10.1364/ol.33.000425.

引用本文的文献

2
Image computing for fibre-bundle endomicroscopy: A review.
Med Image Anal. 2020 May;62:101620. doi: 10.1016/j.media.2019.101620. Epub 2019 Dec 25.
4
High-resolution endomicroscopy with a spectrally encoded miniature objective.
Biomed Opt Express. 2019 Feb 25;10(3):1432-1445. doi: 10.1364/BOE.10.001432. eCollection 2019 Mar 1.
5
Line-scanning fiber bundle endomicroscopy with a virtual detector slit.
Biomed Opt Express. 2016 May 18;7(6):2257-68. doi: 10.1364/BOE.7.002257. eCollection 2016 Jun 1.
6
Design and Performance of a Multi-Point Scan Confocal Microendoscope.
Photonics. 2014 Dec;1(4):421-431. doi: 10.3390/photonics1040421. Epub 2014 Nov 20.
7
Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology.
Biomed Opt Express. 2016 Jan 5;7(2):251-63. doi: 10.1364/BOE.7.000251. eCollection 2016 Feb 1.
8
Pilot Clinical Evaluation of a Confocal Microlaparoscope for Ovarian Cancer Detection.
Int J Gynecol Cancer. 2016 Feb;26(2):248-54. doi: 10.1097/IGC.0000000000000595.
9
Fluorescence and reflectance spectral imaging system for a murine mammary window chamber model.
Biomed Opt Express. 2015 Jul 15;6(8):2887-94. doi: 10.1364/BOE.6.002887. eCollection 2015 Aug 1.
10
High speed, line-scanning, fiber bundle fluorescence confocal endomicroscopy for improved mosaicking.
Biomed Opt Express. 2015 Mar 12;6(4):1241-52. doi: 10.1364/BOE.6.001241. eCollection 2015 Apr 1.

本文引用的文献

1
Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis.
Opt Express. 2007 Apr 2;15(7):4008-17. doi: 10.1364/oe.15.004008.
2
Slit-scanning confocal microendoscope for high-resolution in vivo imaging.
Appl Opt. 1999 Dec 1;38(34):7133-44. doi: 10.1364/ao.38.007133.
3
Multispectral imaging with a confocal microendoscope.
Opt Lett. 2000 Dec 1;25(23):1708-10. doi: 10.1364/ol.25.001708.
5
In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy.
Am J Respir Crit Care Med. 2007 Jan 1;175(1):22-31. doi: 10.1164/rccm.200605-684OC. Epub 2006 Oct 5.
8
Clinical outcome of a novel photodynamic therapy technique using acridine orange for synovial sarcomas.
Photochem Photobiol. 2005 May-Jun;81(3):705-9. doi: 10.1562/2004-06-27-RA-218.
9
Imaging of the ovary.
Technol Cancer Res Treat. 2004 Dec;3(6):617-27. doi: 10.1177/153303460400300612.
10
Design and demonstration of a miniature catheter for a confocal microendoscope.
Appl Opt. 2004 Nov 1;43(31):5763-71. doi: 10.1364/ao.43.005763.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验