Lindorff-Larsen Kresten, Ferkinghoff-Borg Jesper
Department of Molecular Biology, University of Copenhagen, Copenhagen Ø, Denmark.
PLoS One. 2009;4(1):e4203. doi: 10.1371/journal.pone.0004203. Epub 2009 Jan 15.
Analyses of similarities and changes in protein conformation can provide important information regarding protein function and evolution. Many scores, including the commonly used root mean square deviation, have therefore been developed to quantify the similarities of different protein conformations. However, instead of examining individual conformations it is in many cases more relevant to analyse ensembles of conformations that have been obtained either through experiments or from methods such as molecular dynamics simulations. We here present three approaches that can be used to compare conformational ensembles in the same way as the root mean square deviation is used to compare individual pairs of structures. The methods are based on the estimation of the probability distributions underlying the ensembles and subsequent comparison of these distributions. We first validate the methods using a synthetic example from molecular dynamics simulations. We then apply the algorithms to revisit the problem of ensemble averaging during structure determination of proteins, and find that an ensemble refinement method is able to recover the correct distribution of conformations better than standard single-molecule refinement.
对蛋白质构象的相似性和变化进行分析可以提供有关蛋白质功能和进化的重要信息。因此,已经开发了许多评分方法,包括常用的均方根偏差,以量化不同蛋白质构象的相似性。然而,在许多情况下,与其检查单个构象,分析通过实验或分子动力学模拟等方法获得的构象集合更具相关性。我们在此提出三种方法,这些方法可用于以与均方根偏差用于比较单个结构对相同的方式比较构象集合。这些方法基于对集合基础概率分布的估计以及随后对这些分布的比较。我们首先使用分子动力学模拟中的一个合成示例验证这些方法。然后我们应用这些算法重新审视蛋白质结构确定过程中的集合平均问题,发现一种集合优化方法比标准的单分子优化方法能够更好地恢复正确的构象分布。