Rubinstein B, Larripa K, Sommi P, Mogilner A
Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
Phys Biol. 2009 Feb 4;6(1):016005. doi: 10.1088/1478-3975/6/1/016005.
In the process of cell division, chromosomes are segregated by mitotic spindles -- bipolar microtubule arrays that have a characteristic fusiform shape. Mitotic spindle function is based on motor-generated forces of hundreds of piconewtons. These forces have to deform the spindle, yet the role of microtubule elastic deformations in the spindle remains unclear. Here we solve equations of elasticity theory for spindle microtubules, compare the solutions with shapes of early Drosophila embryo spindles and discuss the biophysical and cell biological implications of this analysis. The model suggests that microtubule bundles in the spindle behave like effective compressed springs with stiffness of the order of tens of piconewtons per micron, that microtubule elasticity limits the motors' power, and that clamping and cross-linking of microtubules are needed to transduce the motors' forces in the spindle. Some data are hard to reconcile with the model predictions, suggesting that cytoskeletal structures laterally reinforce the spindle and/or that rapid microtubule turnover relieves the elastic stresses.
在细胞分裂过程中,染色体由有丝分裂纺锤体分离——有丝分裂纺锤体是具有特征性纺锤形的双极微管阵列。有丝分裂纺锤体的功能基于数百皮牛顿的马达产生的力。这些力必须使纺锤体变形,然而微管弹性变形在纺锤体中的作用仍不清楚。在这里,我们求解了纺锤体微管的弹性理论方程,将解与早期果蝇胚胎纺锤体的形状进行了比较,并讨论了该分析的生物物理和细胞生物学意义。该模型表明,纺锤体中的微管束表现得像有效的压缩弹簧,刚度约为每微米数十皮牛顿,微管弹性限制了马达的功率,并且需要微管的夹紧和交联来在纺锤体中传递马达的力。一些数据难以与模型预测相协调,这表明细胞骨架结构在横向加强了纺锤体和/或快速的微管周转减轻了弹性应力。