Suppr超能文献

运动微管束的弹性与有丝分裂纺锤体的形状。

The elasticity of motor-microtubule bundles and shape of the mitotic spindle.

作者信息

Rubinstein B, Larripa K, Sommi P, Mogilner A

机构信息

Stowers Institute for Medical Research, Kansas City, MO 64110, USA.

出版信息

Phys Biol. 2009 Feb 4;6(1):016005. doi: 10.1088/1478-3975/6/1/016005.

Abstract

In the process of cell division, chromosomes are segregated by mitotic spindles -- bipolar microtubule arrays that have a characteristic fusiform shape. Mitotic spindle function is based on motor-generated forces of hundreds of piconewtons. These forces have to deform the spindle, yet the role of microtubule elastic deformations in the spindle remains unclear. Here we solve equations of elasticity theory for spindle microtubules, compare the solutions with shapes of early Drosophila embryo spindles and discuss the biophysical and cell biological implications of this analysis. The model suggests that microtubule bundles in the spindle behave like effective compressed springs with stiffness of the order of tens of piconewtons per micron, that microtubule elasticity limits the motors' power, and that clamping and cross-linking of microtubules are needed to transduce the motors' forces in the spindle. Some data are hard to reconcile with the model predictions, suggesting that cytoskeletal structures laterally reinforce the spindle and/or that rapid microtubule turnover relieves the elastic stresses.

摘要

在细胞分裂过程中,染色体由有丝分裂纺锤体分离——有丝分裂纺锤体是具有特征性纺锤形的双极微管阵列。有丝分裂纺锤体的功能基于数百皮牛顿的马达产生的力。这些力必须使纺锤体变形,然而微管弹性变形在纺锤体中的作用仍不清楚。在这里,我们求解了纺锤体微管的弹性理论方程,将解与早期果蝇胚胎纺锤体的形状进行了比较,并讨论了该分析的生物物理和细胞生物学意义。该模型表明,纺锤体中的微管束表现得像有效的压缩弹簧,刚度约为每微米数十皮牛顿,微管弹性限制了马达的功率,并且需要微管的夹紧和交联来在纺锤体中传递马达的力。一些数据难以与模型预测相协调,这表明细胞骨架结构在横向加强了纺锤体和/或快速的微管周转减轻了弹性应力。

相似文献

1
The elasticity of motor-microtubule bundles and shape of the mitotic spindle.
Phys Biol. 2009 Feb 4;6(1):016005. doi: 10.1088/1478-3975/6/1/016005.
2
Spatial regulation improves antiparallel microtubule overlap during mitotic spindle assembly.
Biophys J. 2008 Apr 1;94(7):2598-609. doi: 10.1529/biophysj.107.117671. Epub 2007 Dec 20.
3
Active forces shape the metaphase spindle through a mechanical instability.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16154-16159. doi: 10.1073/pnas.2002446117. Epub 2020 Jun 29.
4
Asymmetric spindle positioning.
Curr Opin Cell Biol. 2006 Feb;18(1):79-85. doi: 10.1016/j.ceb.2005.12.006. Epub 2005 Dec 19.
5
The chirality of the mitotic spindle provides a mechanical response to forces and depends on microtubule motors and augmin.
Curr Biol. 2022 Jun 6;32(11):2480-2493.e6. doi: 10.1016/j.cub.2022.04.035. Epub 2022 May 9.
6
Oblique circle method for measuring the curvature and twist of mitotic spindle microtubule bundles.
Biophys J. 2021 Sep 7;120(17):3641-3648. doi: 10.1016/j.bpj.2021.07.024. Epub 2021 Jul 31.
7
8
The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks.
Nature. 2005 May 5;435(7038):114-8. doi: 10.1038/nature03503.
10
Determinants of Polar versus Nematic Organization in Networks of Dynamic Microtubules and Mitotic Motors.
Cell. 2018 Oct 18;175(3):796-808.e14. doi: 10.1016/j.cell.2018.09.029.

引用本文的文献

1
Relaxation and Noise-Driven Oscillations in a Model of Mitotic Spindle Dynamics.
Bull Math Biol. 2024 Aug 3;86(9):113. doi: 10.1007/s11538-024-01341-w.
3
The chirality of the mitotic spindle provides a mechanical response to forces and depends on microtubule motors and augmin.
Curr Biol. 2022 Jun 6;32(11):2480-2493.e6. doi: 10.1016/j.cub.2022.04.035. Epub 2022 May 9.
4
Oblique circle method for measuring the curvature and twist of mitotic spindle microtubule bundles.
Biophys J. 2021 Sep 7;120(17):3641-3648. doi: 10.1016/j.bpj.2021.07.024. Epub 2021 Jul 31.
6
Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry.
Mol Biol Cell. 2021 Jan 15;32(2):186-210. doi: 10.1091/mbc.E20-08-0530. Epub 2020 Nov 25.
7
Mechanics of Multicentrosomal Clustering in Bipolar Mitotic Spindles.
Biophys J. 2020 Jul 21;119(2):434-447. doi: 10.1016/j.bpj.2020.06.004. Epub 2020 Jun 12.
8
Helical Twist and Rotational Forces in the Mitotic Spindle.
Biomolecules. 2019 Apr 1;9(4):132. doi: 10.3390/biom9040132.
9
The mitotic spindle is chiral due to torques within microtubule bundles.
Nat Commun. 2018 Sep 3;9(1):3571. doi: 10.1038/s41467-018-06005-7.
10
The Spindle: Integrating Architecture and Mechanics across Scales.
Trends Cell Biol. 2018 Nov;28(11):896-910. doi: 10.1016/j.tcb.2018.07.003. Epub 2018 Aug 6.

本文引用的文献

2
Force-generation and dynamic instability of microtubule bundles.
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8920-5. doi: 10.1073/pnas.0710311105. Epub 2008 Jun 24.
3
Reverse engineering of force integration during mitosis in the Drosophila embryo.
Mol Syst Biol. 2008;4:195. doi: 10.1038/msb.2008.23. Epub 2008 May 6.
4
The microtubule-based motor Kar3 and plus end-binding protein Bim1 provide structural support for the anaphase spindle.
J Cell Biol. 2008 Jan 14;180(1):91-100. doi: 10.1083/jcb.200710164. Epub 2008 Jan 7.
5
Structural and regulatory roles of nonmotor spindle proteins.
Curr Opin Cell Biol. 2008 Feb;20(1):101-6. doi: 10.1016/j.ceb.2007.11.004. Epub 2008 Jan 4.
6
Cell and molecular biology of the spindle matrix.
Int Rev Cytol. 2007;263:155-206. doi: 10.1016/S0074-7696(07)63004-6.
7
Slide-and-cluster models for spindle assembly.
Curr Biol. 2007 Aug 21;17(16):1373-83. doi: 10.1016/j.cub.2007.07.058.
8
Quantitative analysis of an anaphase B switch: predicted role for a microtubule catastrophe gradient.
J Cell Biol. 2007 Jun 18;177(6):995-1004. doi: 10.1083/jcb.200611113.
9
Cortical microtubule contacts position the spindle in C. elegans embryos.
Cell. 2007 May 4;129(3):499-510. doi: 10.1016/j.cell.2007.03.027.
10
Pericentric chromatin is an elastic component of the mitotic spindle.
Curr Biol. 2007 May 1;17(9):741-8. doi: 10.1016/j.cub.2007.03.033. Epub 2007 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验