Navajas Pilar López, Rivas Germán, Mingorance Jesús, Mateos-Gil Pablo, Hörger Ines, Velasco Enrique, Tarazona Pedro, Vélez Marisela
Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
J Biol Phys. 2008 Apr;34(1-2):237-47. doi: 10.1007/s10867-008-9118-8. Epub 2008 Oct 15.
Fission of many prokaryotes as well as some eukaryotic organelles depends on the self-assembly of the FtsZ protein into a membrane-associated ring structure early in the division process. Different components of the machinery are then sequentially recruited. Although the assembly order has been established, the molecular interactions and the understanding of the force-generating mechanism of this dividing machinery have remained elusive. It is desirable to develop simple reconstituted systems that attempt to reproduce, at least partially, some of the stages of the process. High-resolution studies of Escherichia coli FtsZ filaments' structure and dynamics on mica have allowed the identification of relevant interactions between filaments that suggest a mechanism by which the polymers could generate force on the membrane. Reconstituting the membrane-anchoring protein ZipA on E. coli lipid membrane on surfaces is now providing information on how the membrane attachment regulates FtsZ polymer dynamics and indicates the important role played by the lipid composition of the membrane.
许多原核生物以及一些真核细胞器的分裂依赖于FtsZ蛋白在分裂过程早期自组装成膜相关的环状结构。然后依次招募该机制的不同组分。尽管组装顺序已经确定,但这种分裂机制的分子相互作用以及对其力产生机制的理解仍然难以捉摸。开发简单的重组系统是可取的,这些系统试图至少部分地重现该过程的一些阶段。对大肠杆菌FtsZ细丝在云母上的结构和动力学进行的高分辨率研究,使得能够识别细丝之间的相关相互作用,这表明了聚合物可以在膜上产生力的一种机制。现在,在表面的大肠杆菌脂质膜上重组膜锚定蛋白ZipA,正在提供有关膜附着如何调节FtsZ聚合物动力学的信息,并表明了膜脂质组成所起的重要作用。