Suppr超能文献

Three-dimensional anatomy and renal concentrating mechanism. I. Modeling results.

作者信息

Wexler A S, Kalaba R E, Marsh D J

机构信息

Department of Physiology and Biophysics, School of Medicine, University of Southern California, Los Angeles 90033.

出版信息

Am J Physiol. 1991 Mar;260(3 Pt 2):F368-83. doi: 10.1152/ajprenal.1991.260.3.F368.

Abstract

Simulations were performed to test the hypothesis that the three-dimensional organization of the renal medulla is essential for formation of hypertonic urine. As in previous models, representations of loops of Henle, distal tubules, collecting ducts, and vasa recta and recent estimates of tubule characteristics were included in a simulation of NaCl, urea, and fluid transport. In addition, this model specifies the relative positions of the medullary structures. By assuming that the structure of the minimum functional unit is a vascular bundle surrounded by tubules and ascending vessels, we have represented the three-dimensional organization of the medulla by a cylindrically symmetric two-dimensional model. The resulting set of equations gives rise to a nonlinear boundary value problem with linear boundary conditions, which was solved numerically via quasi linearization. Compared with previous simulations, the concentrations predicted by this model more accurately match measured quantities in two regards. First, papillary tip concentrations of NaCl and urea are significantly higher, and, second, a monotonic increase in osmolarity is observed in the inner medulla. The three-dimensional organization permitted development of local concentration gradients, which are essential to the final result.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验