Suppr超能文献

Three-dimensional anatomy and renal concentrating mechanism. II. Sensitivity results.

作者信息

Wexler A S, Kalaba R E, Marsh D J

机构信息

Department of Physiology and Biophysics, School of Medicine, University of Southern California, Los Angeles 90033.

出版信息

Am J Physiol. 1991 Mar;260(3 Pt 2):F384-94. doi: 10.1152/ajprenal.1991.260.3.F384.

Abstract

A mathematical model has been developed to simulate hypertonic urine formation in the renal medulla. The model uses published values of membrane transport parameters, as have other models, but is unique in its representation of the three-dimensional anatomy of the medulla. The model successfully predicts measured fluid flows, osmolarities, and NaCl and urea concentrations. The model results are presented in the companion to this paper [A. S. Wexler, R. E. Kalaba, D. J. Marsh. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F368-F383, 1991.]. In this paper we provide tests of the sensitivity of model performance to variations in the description of the anatomy and in membrane transport parameters. From these studies we conclude that 1) strict counterflow arrangements are required in the outer stripe to prevent loss of NaCl to the systemic circulation, 2) the radial organization in the inner stripe materially improves performance of the inner medulla, 3) radial organization of the inner medulla is essential to hypertonic urine formation there, 4) the model is most sensitive to variation in collecting duct parameters, and 5) reabsorption of urea in the distal tubule improves system performance. The results support the claim that the three-dimensional structure, as captured in the model, provides a crucial framework for the production of hypertonic urine.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验