Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), C/Profesor Albareda no. 1, 18008, Granada, Spain.
Microb Ecol. 2010 May;59(4):668-77. doi: 10.1007/s00248-009-9618-5. Epub 2009 Dec 16.
We investigated if the limited development of Trifolium repens growing in a heavy metal (HM) multicontaminated soil was increased by selected native microorganisms, bacteria (Bacillus cereus (Bc)), yeast (Candida parapsilosis (Cp)), or arbuscular mycorrhizal fungi (AMF), used either as single or dual inoculants. These microbial inoculants were assayed to ascertain whether the selection of HM-tolerant microorganisms can benefit plant growth and nutrient uptake and depress HM acquisition. The inoculated microorganisms, particularly in dual associations, increased plant biomass by 148% (Bc), 162%, (Cp), and 204% (AMF), concomitantly producing the highest symbiotic (AMF colonisation and nodulation) rates. The lack of AMF colonisation and nodulation in plants growing in this natural, polluted soil was compensated by adapted microbial inoculants. The metal bioaccumulation abilities of the inoculated microorganisms and particularly the microbial effect on decreasing metal concentrations in shoot biomass seem to be involved in such effects. Regarding microbial HM tolerance, the activities of antioxidant enzymes known to play an important role in cell protection by alleviating cellular oxidative damage, such as superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase, were here considered as an index of microbial metal tolerance. Enzymatic mechanisms slightly changed in the HM-adapted B. cereus or C. parapsilosis in the presence of metals. Antioxidants seem to be directly involved in the adaptative microbial response and survival in HM-polluted sites. Microbial inoculations showed a bioremediation potential and helped plants to develop in the multicontaminated soil. Thus, they could be used as a biotechnological tool to improve plant development in HM-contaminated environments.
我们研究了在重金属(HM)多污染土壤中生长的三叶草的生长受限是否可以通过选择的本地微生物(细菌(Bacillus cereus(Bc))、酵母(Candida parapsilosis(Cp))或丛枝菌根真菌(AMF))得到改善,这些微生物被用作单一或双重接种物。这些微生物接种物被用来确定选择 HM 耐受微生物是否可以促进植物生长和养分吸收,并抑制 HM 吸收。接种的微生物,特别是在双重关联中,将植物生物量增加了 148%(Bc)、162%(Cp)和 204%(AMF),同时产生了最高的共生(AMF 定殖和结瘤)率。在这种自然污染土壤中生长的植物缺乏 AMF 定殖和结瘤,这是由适应的微生物接种物补偿的。接种微生物的金属生物积累能力,特别是微生物对降低地上生物量中金属浓度的影响,似乎与这些影响有关。关于微生物对 HM 的耐受性,抗氧化酶的活性被认为在通过减轻细胞氧化损伤来保护细胞方面起着重要作用,如超氧化物歧化酶、过氧化氢酶、谷胱甘肽还原酶和抗坏血酸过氧化物酶,在这里被认为是微生物对金属耐受性的一个指标。在存在金属的情况下,HM 适应的 B. cereus 或 C. parapsilosis 中的酶机制略有变化。抗氧化剂似乎直接参与了微生物对 HM 污染场所的适应性反应和存活。微生物接种具有生物修复潜力,并帮助植物在多污染土壤中生长。因此,它们可以用作生物技术工具,以改善 HM 污染环境中植物的发育。